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ABSTRACT

Although the use of a damping layer near the top of a computational model domain has proven
effective in absorbing upward-proagating gravity-wave energy in idealized simulations, this technique
has been less successful in real atmospheric applications. Here, a new technique is proposed for
nonhydrostatic model equations that are solved using split-explicit time integration techniques. In
this method, an implicit Rayleigh damping term is applied only to the vertical velocity, as a final
adjustment at the end of each small (acoustic) time step. The adjustment is equivalent to including
an implicit Rayleigh damping term in the vertical momentum equation together with an implicit
vertical diffusion of w, and could be applied in this manner in other time integration schemes. This
implicit damping for the vertical velocity is unconditionally stable and remains effective even for
hydrostatic gravity waves. The good absorption characteristics of this layer across a wide range of
horizontal scales are confirmed though analysis of the linear wave equation and numerical mountain-
wave simulations, and through simulations of an idealized squall line and of mountain waves over the
Colorado Rocky Mountains.

1. Introduction

While it is well known that internal gravity
waves play an important role in the dynamics of
mesoscale circulations, their treatment in numerical
simulation models has been problematic. A major
impediment to the accurate representation of grav-
ity waves stems from artificial influences of the up-
per boundary in the model domain. Conventional
upper boundary conditions, such as a rigid lid or
constant pressure surface, are totally reflective to
upward propagating gravity-wave energy. Although
both gravity-wave radiation boundary conditions
and upper absorbing layers have been developed,
these techniques have, in practice, proven more suc-
cessful in idealized research simulations than in real
atmospheric NWP applications. In this paper, we
propose a simple approach for implementing an up-
per absorbing layer in split-explicit models that may
prove more effective in many mesoscale NWP appli-
cations.

Corresponding author address: Dr. Joseph B.
Klemp, National Center for Atmospheric Research,
P.O. Box 3000, Boulder, Colorado, 80307-3000;
email: klemp@ucar.edu

One approach for reducing the artificial reflec-
tion of gravity-wave energy at the top of a model
domain is to employ a gravity-wave radiation con-
dition along the upper boundary. A radiation con-
dition for linear gravity waves can be derived that is
independent of both the wave frequency and vertical
wavelength for hydrostatic waves in the absence of
rotation (i. e. Klemp and Durran, 1983, Bougeault,
1983). The derivation of this radiation condition as-
sumes that a layer of infinite depth exists above the
top boundary of the model, in which the wind and
stability is horizontally homogeneous and constant
with height. While these restrictions may be ac-
ceptable for many applications involving idealized
flow, they are not as well suited for the horizontal
inhomogeneities and wide range of scales encoun-
tered in numerical weather prediction. Neverthe-
less, this radiation condition has been implemented
and used productively in the Navy COAMPS Model
(i.e. Jiang and Doyle, 2004, Doyle et al., 2005), and
a localized version is available in the MM5 Model
(Grell et al., 1995).

An alternative approach for mitigating gravity-
wave energy reflection at the upper boundary is to
include a damping (sponge) layer in the upper por-
tion of the model domain. This layer may employ ei-
ther horizontal diffusion or Rayleigh damping terms
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with damping coefficients that increase with height
over a depth sufficient to achieve good absorption
characteristics (i.e. Klemp and Lilly, 1978, Durran
and Klemp, 1983). Although a horizontal diffusion
layer is conceptually well suited for both idealized
and real-data simulations, for many practical ap-
plications, the maximum stable diffusion coefficient
is significantly smaller than the values required to
achieve effective absorption of gravity-wave energy.
To illustrate this limitation, let’s assume that the
practical linear stability limit on the dimensionless
second order diffusion coefficient is approximately
KH∆t/∆x2 ≃ 0.1 (including multi-dimensions and
added limitations from other effects such as advec-
tion). At this limit, KHk/U = 0.2π(∆x/λH)c−1

R ,
where λH is the horizontal wavelength of gravity
waves to be absorbed, and cR = U∆t/∆x is the ad-
vective Courant number. For waves having λH =
6∆x and cR = 0.2, KHk/U ≃ 0.5, which is con-
siderably smaller than values (∼ 2) required to pre-
vent significant wave reflection for typical absorbing
layer depths (see Klemp and Lilly, 1978, Fig.1). For
better resolved waves or higher Courant numbers,
the upper limit on this damping parameter gets
even smaller. Hahn (2007) discusses difficulties in
successfully applying a horizontal-diffusion absorb-
ing layer in the WRF/ARW Model that are consis-
tent with this stability limitation. Zängl (2007) has
attempted to improve the effectiveness of a horizon-
tal diffusion absorbing layer by altering the diffusion
operator to produce relatively higher damping at
larger horizontal scales. Including vertical diffusion
in the damping layer can provide additional absorp-
tion of gravity wave energy (i.e. in the WRF/ARW
Model, Skamarock et al., 2005, Zängl, 2007). How-
ever, vertical diffusion terms have similar linear sta-
bility constraints to horizontal diffusion and may
also alter the vertical structure of the larger scale
environment.

Although the implementation of an absorbing
layer using Rayleigh damping can work well for
idealized simulations with a known background
environmental state, difficulties arise in NWP
applications because the entire atmospheric state
is evolving as part of the simulation. To address
this complication, modelers have imposed Rayleigh
damping layers in which fields are relaxed toward
a larger scale representation of the atmosphere,
achieved by Fourier filtering smaller horizontal
scales (i.e. Chen et al., 2005) or other relaxation
techniques [i.e. in the Meso-NH Model (Bougeault
and Mascart, 2001), and the COAMPS Model
(Jim Doyle, personal communication)], or using
nudging techniques based on observations or other
large-scale analyses [i.e. for the RAMS Model
(MRC/Aster, 2000), and the MM5 Model (Wei et
al., 2002)]. While these are more sophisticated
techniques, they still require a priori decisions

as to which scales will be damped for particular
applications.

Here, we present a new approach for a gravity-
wave absorbing layer that is simple to implement
in split-explicit time-integration schemes and ap-
pears to work well for both idealized and real-data
(NWP) applications. With this approach, an im-
plicit Rayleigh damping term for the vertical veloc-
ity is added as a final adjustment at the end of each
small (acoustic) time step. In section 2, we describe
the procedure for including the Rayleigh-damping
term in the time-split integration for the nonhy-
drostatic equations expressed in height coordinates
(including a corresponding description for the mass-
coordinate equations in the Appendix). We then
analyze the linear wave equation that includes this
absorbing layer (section 3) to quantify the reflec-
tion characteristics as a function of horizontal scale
as well as the depth and strength of the damp-
ing region. Numerical mountain-wave simulations
are presented in section 4 to demonstrate quanti-
tatively the effectiveness of this approach across a
wide range of horizontal scales. We further illus-
trate the utility of our proposed absorbing layer in
an idealized squall-line simulation (section 5) and in
an NWP forecast for mountain waves over the east-
ern slope of the Colorado Rocky Mountains (section
6). Finally, in section 7, we summarize this tech-
nique and provide some guidance for specification
of the Rayleigh damping coefficient.

2. An Implicit Rayleigh damping layer in
the split-explict numerical integration

For simplicity, we shall discuss our implemen-
tation of an upper gravity-wave absorbing layer in
the context of the inviscid (except for the absorb-
ing layer) dry nonhydrostatic equations in Carte-
sian (x, z) coordinates. Expressing the potential
temperature θ = θ̄(z) + θ′ and the Exner function
π = π̄(z) + π′ as perturbations about a specified
reference sounding, these equations can be written
on an f plane without further approximation as:

∂tVH
+ cpθ∇

H
π′=−V·∇V

H
−fk×V≡FFFVH

(1)

∂tw+cpθ ∂zπ
′−g θ

′

θ̄
=−V·∇w ≡ F

w
(2)

∂tθ
′ + w ∂zθ=−V·∇

H
θ′ ≡ Fθ (3)

∂tπ
′ + C∇·ρθV=0 (4)

where C = c2/(cpρθ
2) with c2 = (cp/cv)RT being

the square of the sound speed, V = (u, v, w),
and the subscript H refers to the horizontal vector
components.

In time-split integration schemes, terms on the
left-hand sides of (1)-(4) are integrated forward in
time over a series of small time intervals ∆τ while
the the right-hand sides F( ) are held fixed at time
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t. We represent terms responsible for gravity waves
and for horizontally propagating sound waves with
forward-backward time differencing, and treat the
vertical sound-wave propagation terms implicitly.
To implement our proposed absorbing layer, we
add an adjustment step to the small-time-step
integration, which can be written in the form

Vτ+∆τ

H
= Vτ

H
− ∆τ

(

cpθ
t
∇

H
π′τ − FFF t

VH

)

(5)

π′

1 = π′τ − ∆τ Ct
[

∇·ρtθtVτ+∆τ

H

+ 1
2∂z(ρ

tθtwτ )
]

(6)

wτ∗ = wτ − ∆τ
(

cpθ
t∂zπ′

τ∗ − g
θ′

θ̄

τ

− F t

w

)

(7)

π′τ∗ = π′

1 − 1
2∆τCt∂z(ρ

tθtwτ∗) (8)

wτ+∆τ = wτ∗ −Rw∆τ wτ+∆τ
(9)

θ′τ+∆τ = θ′τ − ∆τ
(

wτ+∆τ∂zθ
t − F t

θ

)

(10)

π′τ+∆τ = π′

1 − 1
2∆τCt∂z(ρ

tθtwτ+∆τ ), (11)

where the overbar labeled τ∗ denotes an average of
the variable at time τ and its intermediate state τ∗,
and the boxed equation (9) represents the added
adjustment in the form of an implicit Rayleigh
damping on w.

In the traditional time-split integration, a small
time step is computed in the order of the above
equations [with τ∗ = τ + ∆τ and with (9)

omitted] : Vτ+∆τ

H
is obtained from (5); wτ+∆τ is

computed by solving a tridiagonal matrix for the
vertically implicit equation produced by combining
(7) and (8), using the known portion of the pressure
equation π1 in (6); and finally, θ′τ+∆τ and π′τ+∆τ

are recovered from (10) and (11), respectively,
knowing wτ+∆τ . Our proposed Rayleigh-damping
adjustment (9) on w is applied following the
vertically implicit calculation of w [now represented
in (7) and (8) as an intermediate value at τ∗ instead
of what would have been the final value at τ + ∆τ
in the absence of (9)]. Thus, the addition of this
damping adds only a single line of code to the small-
time-step calculations.

Notice that the inclusion of this Rayleigh
damping as an adjustment step is different from
adding an implicit Rayleigh damping term directly
in the w equation (7). This is demonstrated by
combining (7)-(9) and (11) to eliminate wτ∗ and
π′τ∗, with the result:

∂τw + cpθ
t∂zπ′

τ − g
θ′

θ̄

τ

+Rww
τ+∆τ

− 1
4∆τ2cpθ

t∂z

[

Ct∂z(ρ
tθtRww

τ+∆τ )
]

= F t

w
, (12)

∂τπ
′+Ct

[

∇·ρtθtVτ+∆τ

H
+ ∂z(ρ

tθt w
τ
)
]

= F t
π, (13)

where the overbar labeled τ now denotes an average
of the variable at time τ and its final state at
τ + ∆τ . Here, there are two terms involving Rw in
(12). The first is the same as a Rayleigh damping
term added directly to the w equation. The second
term containing Rw, however, appears because
the Rayleigh damping is actually applied as an
adjustment step (9). This term has the form of an
implicit vertical diffusion of w and is multiplied by
the square of the time step. As demonstrated in the
next section, this second Rw term in (12) enables
the absorption of vertically propagating gravity-
wave energy even when the waves are essentially
hydrostatic.

Adapting this technique in time-split nonhydro-
static NWP modeling systems should be straight
forward without additional complications. For ex-
ample, whether the model equations are cast in ad-
vective or flux form using either height or mass for
the vertical coordinate, an adjustment comparable
to (9) can be applied to the prognostic variable
for vertical velocity immediately after its interme-
diate value has been calculated, and will produce
similar absorption characteristics (demonstrated for
the mass coordinate in the Appendix). Also, the
gravity-wave terms [the buoyancy term in (7) and
vertical advection term in (10)] can be treated im-
plicitly without additional complication.

3. Analysis of implicit Rayleigh damping on
www for steady linear mountain waves

To demonstrate the behavior of this upper
boundary implicit Rayleigh damping layer, we
follow the approach of Klemp and Lilly (1978) and
evaluate the reflection characteristics for vertically
propagating inertia-gravity waves for steady-state
flow over terrain. For this analysis, we consider the
2-D linearized form of (1)-(4) with the additional
simplifications that U2 << c2 and the vertical
wavelength λz << 4πHρ, where Hρ is the density
scale height, which are good approximations for this
analysis. The steady-state linear representation of
equations (5), (10), (12), and (13) for a constant
mean wind U and stability N then becomes

U∂xu
′ + ∂xp

′ − fv′ = 0 (14)

U∂xv
′ + fu′ = 0 (15)

U∂xw + ∂zp
′ − b′ +Rww

− 1
4c

2∆τ2∂zz(Rww) = 0 (16)

U∂xb
′ +N2w = 0 (17)

∂xu+ ∂zw = 0, (18)

where p′ = cpθ̄π
′, b′ = gθ′/θ̄, and N2 = gθ̄z/θ̄.

Representing the dependent variables ψ in terms of
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their Fourier components ψ(x, z) = ψ̂(z)exp(ikx),
(14)-(18) can be combined into a single wave
equation

∂z̃z̃

[

(1−F 2−i 14α
2βw)ŵ

]

+
[

1−K2(1−iβw)
]

ŵ = 0.

(19)
Here, the coefficients are expressed dimensionless
form:

K=
kU

N
, F =

f

kU
, α=kc∆τ, βw =

Rw

kU
, (20)

and the dimensionless vertical coordinate z̃ =
Nz/U is scaled by the vertical wavenumber for hy-
drostatic nonrotating waves. Notice that although
for simplicity we have cast this analysis in terms
of steady mountain waves, the same analysis holds
for propagating gravity waves if we just replace the
mean wind speed U with the phase speed U ± cH ,
where cH = ω/k is the intrinsic horizontal phase
speed of the wave.

To evaluate the reflection characteristics of the
upper absorbing layer, we solve (19) for a specified
profile of βw(z̃) between the bottom of the layer at
z̃d and the top of the model domain at z̃t. Here, we
adopt the damping profile proposed by Klemp and
Lilly (1978):

βw(z̃) = βmax sin2

(

π

2

z̃ − z̃d

z̃t − z̃d

)

. (21)

Beneath the absorbing layer, the inviscid solution
(βw = 0) for a single wave number k has the form

ŵl(z̃) = C1e
iΛz(z̃−z̃d) + C2e

−iΛz(z̃−z̃d), (22)

where Λz =
[

(1 −K2)/(1 − F 2)
]

1

2 = Nλz/U is the

dimensionless vertical wavenumber. For Λ2
z > 0 and

k > 0, the first term on the right hand side of (22)
corresponds to the mode with upward-propagating
wave energy, while the second term represents the
downward-propagating mode. Thus, the ratio r =
|C2/C1| is a measure of the wave reflection that
occurs in the absorbing layer above this inviscid
region.

To match the solution of (19) in the absorbing
layer to the inviscid solution (22) below, we require
the pressure and vertical velocity to be continuous
across the the interface between the two layers at
z = zd:

ŵ(z̃d) = C1 + C2 (23)

∂z̃ŵ(z̃d) = iΛz(C1 − C2), (24)

since p̂(z̃d) = −i(U/k)(1− F 2)∂z̃ŵ(z̃d). Combining
(23) and (24) then determines C1 and C2, and the
reflection coefficient:

r =

∣

∣

∣

∣

∣

Λzŵ(z̃d) + i∂z̃ŵ(z̃d)

Λzŵ(z̃d) − i∂z̃ŵ(z̃d)

∣

∣

∣

∣

∣

. (25)

The solution for ŵ in the absorbing layer is obtained
by: 1) specifying the the horizontal scale of the
wave in terms of the dimensionless parameters K,
F and α, 2) specifying the depth of the absorbing
layer z̃t − z̃d and the maximum damping cofficient
βmax at the top of the layer, and 3) solving (19) for
ŵ by inverting a tridiagonal matrix subject to the
boundary conditions ŵ(z̃d) = 1 and ŵ(z̃t) = 0. As a
check on this analysis procedure, we confirm that by
setting Rw = 0 and inserting a damping term −Kuû
on the rhs of the horizontal momentum equation
(14), we recover the same reflection coefficients as
presented by Klemp and Lilly (1978).

To illustrate the reflection characteristics of
the proposed absorbing layer, we consider first its
behavior for the horizontal scale parameters K =
F = 0.1, which corresponds to f/N = KF =
0.01. Here, K is a measure of the nonhydrostatic
character of the wave (K → 0 in the hydrostatic
limit), while F reflects the influence of inertial
effects on the wave. Steady vertically propagating
waves are permitted in the parameter range K < 1
and F < 1. Thus, these small values of K and
F characterize waves that are nearly hydrostatic
with small inertial influences. For reference values
of the parameters U = 10 ms−1, N = 10−2 s−1,
and f = 10−4 s−1, the specification of K = F =
0.1 corresponds to a horizontal wavelength λH =
2π/k = 62.8 km, which would be the maximum
energy containing scale for steady linear flow over
a bell-shaped mountain having half-width a = 10
km. For the final dimensionless coefficient, we set
α = 0.1. Note that α is not inherently dependent
on horizontal scale since the time step ∆τ typically
increases in proportion to the horizontal scale while
the horizontal wavenumber k decreases accordingly.
α can also be expressed as α = 2πcr∆x/λH , where
cr = c∆τ/∆x is the Courant number for the small
time steps, and thus, α depends principally on the
ratio of the horizontal wavelength to the grid scale.
For a typical value of cr = 0.5, α = 0.1 corresponds
to a horizontal wavelength of about 30∆x. This is
approximately equivalent to the resolution of the
maximum energy wavelength with ∆x = 2 km for
the bell mountain having a = 10 km.

The reflection coefficient r is plotted in Fig.
1a as a function of βmax for various depths of
the absorbing layer for K = F = α = 0.1
for the proposed implementation in which the
implicit Rayleigh damping on w is applied in the
absorbing layer through an adjustment step (9)
in the integration procedure. For this parameter
regime, the damping layer provides good absorption
of gravity-wave energy for layers at least one vertical
wavelength in depth over a broad range of damping
coefficients βmax. Since k is contained in βmax, the
insensitivity of r to βmax is beneficial because it also
means that good wave absorption can be achieved
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Figure 1. Linear reflection coefficient r as a function of
βmax = Rw(zt)/kU for a single wavenumber k for kU/N =
f/kU = 0.1 with an implicit Rayleigh damping term applied
(a) as an adjustment (9) at the end of the time step with
α = 0.1, and (b) directly in the w equation (7). Reflection
characteristics are displayed for D/λz = 0.5, 1.0, 1.5, and
2.0, where λz = 2πU/N represents the vertical wave length
for a steady hydrostatic nonrotating mountain wave, and
D = zt − zd.

for a given dimensional damping coefficient Rw over
a wide range of horizontal scales.

Figure 1b depicts the reflection characteristics
for α = 0, which corresponds to the case in
which an implicit Rayleigh damping term is added
directly to the vertical momentum equation (7).
For this implementation the damping layer exhibits
similarly good absorption characteristics to those
in Fig 1a for our proposed scheme, implying that
for K = 0.1 the nonhydrostatic influences are still
sufficient to provide effective damping.

Moving to larger horizontal scales, Fig. 2
displays the corresponding reflection coefficients for
K = 0.02 and F = 0.5, a five times greater
horizontal wavelength than shown in Fig. 1.
Here, the damping applied through an adjustment
step with α = 0.1 (Fig. 2a) can provide an
effective absorption layer, similar to the behavior
at shorter scales as depicted in Fig.1a. However,

if the Rayleigh damping term is applied directly
within the vertical momentum equation (Fig. 2b
for α = 0), the reflection of gravity-wave energy
is increased significantly. The differing impact
of implementing Rayleigh damping directly in (7)
or as an adjustment step (9) is apparent from
equation (19). Applying the damping directly in
the ŵ equation produces the damping term in the
coefficient multiplying ŵ in (19): 1 −K2(1 − iβw).
As the flow becomes sufficiently hydrostatic (K →
0) the influence of this damping term disappears. In
contrast, when the Rayleigh damping is applied as
an adjustment step, the term multiplied by α in (19)
is also present and remains effective even in the limit
of hydrostatic flow. For inertia gravity waves the
absorbing layer may have increased effectiveness at
larger horizontal scales since the vertical wavelength
decreases with increasing F (i.e. λz ∼

√
1 − F 2 ).

Although the behavior of the absorbing layer is
illustrated in Fig. 2 for α = 0.1, similar behavior
can be inferred for other values of α. Since the
damping term in (19) is proportional to α2βw larger
values of α (higher wavenumbers, closer to the grid
scale) yield the same reflection characteristics for a
smaller value of the damping coefficient βw. AsK is
decreased further below 0.02, the reflection profiles
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0 400 800

r

r

(a)

(b)

1

2

1

2

βmax

Figure 2. As in Fig. 1 except for a five times larger horizontal
wavelength corresponding to kU/N = 0.02 and f/kU = 0.5.
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Figure 3. As in Fig. 1 except for a five times smaller
horizontal wavelength corresponding to kU/N = 0.5 and
f/kU = 0.02.

shown in Fig. 2b move closer to unity, while the
profiles in Fig. 2a remain little changed.

At smaller horizontal scales where nonhydro-
static effects are significant, the Rayleigh damping
effects inherent in the w equation dominate, and
thus applying the Rayleigh damping either directly
in the vertical momentum equation (7) or as an ad-
justment step (9) yields virtually identical results.
Fig. 3 displays the reflection coefficient r as a func-
tion of βmax for a horizontal wavenumber K = 0.5
that is five times larger than the wavenumber con-
sidered in Fig.1. Here, the reflection characteristics
as a function of the depth of the absorbing layer
are similar to those at larger scales except that the
values of βmax are much reduced.

4. Linear mountain wave simulations

To document the practical application of our
proposed absorbing layer, we consider first the case
of uniform flow over a small amplitude (hm = 10 m)
bell-shaped mountain. The linear analytic solutions
for the resulting steady mountains waves are well
documented for a wide range of horizontal scales
(see for example Smith 1979) and are frequently
used to test the viability of various aspects of
model numerics. For these simulations, we utilize
a split-explicit time integration of the full 2-D
nonhydrostatic equations cast in terms of a terrain-
following hydrostatic pressure (mass) coordinate
[see Klemp et al. (2007) and analysis in the
Appendix], using an Arakawa C-grid staggering for
variables on the computational grid. The large time
steps are advanced using leapfrog time differencing
and the advection terms are represented by second
order centered differences. (Choice of the large time
step integration scheme, such as leapfrog or Runge-

Kutta, has no effect on the implementation of the
absorbing layer). The undisturbed atmospheric
flow is characterized by a constant cross mountain
velocity U = 10 ms−1 and constant Brunt-Väisälä
frequency N = 0.01 s−1, which produce a vertical
wavelength λz = 2πU/N = 6.28 km for steady
hydrostatic mountain waves in the absence of
rotation. To represent these waves on the model
grid, we employ a nearly constant vertical grid
spacing ∆z ≃ 250 m.

We first consider a mountain-half width a = 10
km, for which the steady linear mountain waves
are nearly hydrostatic and rotational influences
are small. We set the horizontal grid length at
∆x = 2 km, and the large and small time steps
are 24 s and 4 s, respectively. The damping layer
begins at zd = 10 km and extends to the top
of the domain at zt = 20 km, with the Rayleigh
damping coefficient specified according to (21) with
a maximum value Rw(zt) = 0.15 s−1. Recognizing
that the maximum energy containing scale occurs
at k = a−1, we can estimate the dimensionless
parameters in the previous section for this scale:
K = F = 0.1, α = 0.12, D/λz = 1.6, and βmax =
150. The parameters K, F , and α correspond
closely to the conditions represented in Fig. 1a
and the values of D and βmax indicate there should
be little reflection of vertically propagating wave
energy. Fig. 4a displays the linear steady-state
solution for the vertical velocity field while Fig. 4b
shows the corresponding numerical solution. Here,
the linear steady-state solution is obtained through
Fourier reconstruction from the analytic solutions
for the individual horizontal wave numbers. For
convenience, we shall henceforth refer to these linear
solutions as the “analytic” solutions. The numerical
integration was carried out to 30 h (dimensionless
time Ut/a=108) to ensure that any wave reflection
from the upper boundary would have sufficient time
to affect the entire domain. The corresponding
vertical momentum flux profile at this time is
shown in Fig. 5, and should be compared against
the constant theoretical value M/MH = 0.94
(see Klemp and Lilly, 1980) The close agreement
between the numerical and analytical solutions for
w and M in the inviscid region below 10 km
confirms the effectiveness of the Rayleigh damping
layer for w at this horizontal scale.

We also simulated this case using a shallower
absorbing layer by lowering the top of the domain
to zt = 15 km, while keeping zd at 10 km (D/λz =
0.8). The resulting vertical velocity field at Ut/a =
108, shown in Fig. 4c, retains reasonably good
quantitative agreement with the analytic solution in
Fig. 3a, although a slight distortion of the contours
is apparent due to partial wave reflection. The
momentum flux profile in Fig. 5 also remains close
to the theoretical value.
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Figure 4. Vertical-velocity contours for flow with constant
mean wind and stability passing over a 10 m bell-shaped
mountain of half-width a = 10 km (U/aN = 0.1 and af/U =
0.1). (a) Linear analytic solution for steady inviscid vertically
propagating mountain wave. (b) Numerical simulation at
Ut/a = 108 with absorbing layer between z = 10 km
(indicated by the thin dot-dashed line) and zt = 20 km
(D/λz = 1.6). (c) As in (b) except with zt = 15 km

(D/λz = 0.8). The contour interval is 0.002 ms−1, with
every third contour represented by a heavier line.
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Figure 5. Vertical momentum flux profiles at Ut/a = 108 for
the numerical simulations shown in Figs. 4, 6, and 7, with the
damping layer extending from 10 km up to top of the model
domain at zt = 20 km (D/λz = 1.6, plotted with solid lines)
and for a model top at zt = 15 km (D/λz = 0.8, plotted with
dot-dashed lines). Profiles are displayed for K = U/aN =
0.5, 0.1 and 0.02, corresponding to a mountain halfwidth
a = 2 km, 10 km, and 50 km, respectively. Profiles are
normalized with respect to the steady linear momentum flux
MH for hydrostatic nonrotating flow, and the corresponding
theoretical constant-flux profiles (Klemp and Lilly, 1980) are
indicated by the short-dashed lines.

To test this damping layer at larger scales,
we increased the mountain half-width by a factor
of 5 to a = 50 km. For this simulation, the
horizontal grid length ∆x = 10 km and the large
and small times steps ∆t = 120 s and ∆τ = 20
s are proportionately larger. For the maximum
energy containing scale k = a−1, the parameters
K = 0.02, F = 0.5, and α = 0.12 correspond
closely to those used in calculating the damping-
layer reflection characteristics displayed in Fig. 2a.
The maximum damping coefficient at the top of the
absorbing layer is set at Rw(zt) = 0.05 s−1, which
corresponds to βmax = 250.

The vertical velocity field at Ut/a = 108 for
the simulation with zt = 20 km (D/λz = 1.6)
is displayed in Fig. 6b, and again exhibits close
agreement below 10 km with the analytic solution
shown in Fig. 6a. The vertical momentum flux
profile below 10 km also agrees well with the
constant analytic value of M/MH = 0.59 (Klemp
and Lilly 1980). Lowering the top of the model
domain to 15 km (D/λz = 0.8), again reveals slight
distortion in the vertical velocity field (Fig. 6c),
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Figure 6. As in Fig. 4 except for a mountain half-width
a = 50 km (N/aU = 0.02 and af/U = 0.5, and the contour

interval is 0.0003 ms−1.

although the overall agreement with the analytic
solution is reasonably maintained. Similarly, the
momentum flux profile in Fig. 5 remains near the
analytic value, although with a larger deviation just
above the top of the inviscid region.

To evaluate the behavior at smaller nonhydro-
static scales, we reduced the mountain half-width
to a = 2 km and scaled down the grid charac-
teristics accordingly (∆x = 400 m, ∆t = 4.8 s
and ∆τ = 0.8). For the representative wavenum-
ber k = a−1, the parameters K = 0.5, F = 0.02,
and α = 0.12 are similar to those represented in
Fig. 3. We specified the maximum Rayleigh damp-
ing coefficient Rw(zt) = 0.04 s−1, corresponding
to βmax = 7.5, which is consistent with good ab-
sorption characteristics in Fig. 3. Here again,
the simulation with a 10 km deep absorbing layer
(D/λz = 1.6), shown in Fig. 7b, exhibits good
agreement with the linear analytic solution in Fig
7a in the inviscid region below 10 km. At these
scales, the characteristic nonhydrostatic behavior is
clearly evident in the downstream displacement of
the waves with height. Reducing the depth of the
absorbing layer by half to D/λz = 0.8 maintains
the upward radiating character of the waves, al-
though slight distortions in the wave structure are
evident (Fig.7c). Similarly, the vertical momentum
flux profile shown in Fig. 5 is very close to the lin-
ear analytic value of M/MH = 0.78 in the inviscid
region below 10 km for the 10 km deep absorbing
layer, and degrades only slightly when the absorb-
ing layer thickness is reduced to 5 km.

5. Idealized squall-line simulations

To test the behavior of this implicit gravity-
wave absorbing layer in a more complex environ-
ment, we consider the simulation of convective
squall lines, which are known to produce a broad
spectrum of gravity waves radiating upward and lat-
erally from the convective region. For this purpose,
we simulate an idealized two-dimensional squall line
using the WRF/ARW version 2.2 (Skamarock et al.
2005, Klemp et al. 2007, Skamarock and Klemp,
2007). The WRF/ARW solves the nonhydrostatic
equations using a terrain-following hydrostatic-
pressure (mass) vertical coordinate, and thus the
implicit Rayleigh damping layer is implemented as
described in the Appendix. The atmosphere is ini-
tialized with the horizontally homogeneous thermo-
dynamic sounding created by Weisman and Klemp
(1982) together with a wind profile having U= −12
ms−1 at the surface, increasing linearly to zero at
z = 2.5 km, and remaining constant at zero above
this height. With this environmental shear, a long-
lived squall line develops with a pulsing regenera-
tion of the active convection that gradually decays
over time, consistent with the results of Rotunno et
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Figure 7. As in Fig. 4 except for a mountain half-width a = 2
km (N/aU = 0.5 and af/U = 0.02, and the contour interval

is 0.006 ms−1.

al (1988) and Weisman et al (1988). The model do-
main extends 500 km in the horizontal and 30 km in
the vertical with a nominal 250 m grid size in both
directions. In the time-split numerical integration,
the large time step is ∆t = 2 s, and the small time
step is ∆τ = 0.5 s. The absorbing layer is located
between 20 and 30 km, with the Rayleigh damping
coefficient increasing with height according to (21).

Vertical cross-sections of the simulated squall
line both with the absorbing layer (Rw = 0.2 s−1)
and with no absorbing layer (Rw = 0) are displayed
in Fig. 8 at 1, 3, and 5 h. At 1 h, the gravity waves
generated by the squall line are just reaching the
top of the domain, and thus the two simulations are
quite similar. By 3 h, significant reflection from the
upper boundary is evident in the simulation with no
absorbing layer, and by 5 h the entire stratosphere
is altered by these reflected modes. In contrast,
with the absorbing layer, the upward propagating
gravity waves are gradually damped out above 20
km with little evidence of reflection. Here, the
most energetic modes have a horizontal wavelength
of about 40 km and a phase speed of about 20
ms−1. Given the mean stratospheric stability of
about N = 0.02 s−1, the absorbing-layer depth is
about 1.5 times the vertical wavelength (2πU/N) of
these waves.

We also conducted simulations of this squall
line with smaller (Rw = 0.1 s−1) and larger (Rw =
0.4 s−1) values of the maximum Rayleigh damping
coefficient. From these simulations, we concluded
that Rw = 0.2 s−1 provided the best overall
absorption of the gravity waves; with the smaller
value the waves retained finite amplitude at the top
of the domain, and with the larger value, most of the
wave amplitude was removed in the lower portion
of the absorbing layer. For a more quantitative
assessment, we computed the vertical energy flux
<pw> for these simulations, which is displayed in
Fig. 9 for the upper portion of the computational
domain. Here, the energy flux profiles are more
informative than those for vertical momentum
flux since they are always positive for upward
propagating wave energy, while the momentum flux
is positive for rightward-propagating gravity waves
but negative for leftward moving ones. The energy
flux is quite variable in response to the pulsating
character of the convective updrafts and thus small
differences the squall-line evolution can result in
large differences in the energy-flux profiles in the
stratosphere. However, the behavior within the
absorbing layer is consistent with our expectations:
with no damping the energy flux profile oscillates
significantly in the upper 10 km of the domain
and even becomes negative at times (i.e. at 5
h as shown in Fig. 9c) as a consequence of
the reflected modes. With the absorbing layer
turned on (Rw = 0.1 − 0.4s−1) the energy flux
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deep absorbing layer with Rw = 0.1, 0.2, and 0.4, depicted
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decays monotonically with height above about 20
km, although a slight oscillation near the upper
boundary is still apparent for Rw = 0.1 s−1 at 5
h (Fig. 9c). With increasing Rw the energy flux
decreases more rapidly with height, consistent with
the remarks above regarding the observed decline
of the wave amplitude. While there is no precise
means of determining the “optimal” value of Rw,
setting Rw = 0.2 s−1 appears to produce the best
overall results for this case.

6. NWP simulation over the Colorado
Rocky Mountains

The implicit Rayleigh absorbing layer proposed
here should be particularly well suited for NWP
applications, for which there is no rigorous way
to separate the gravity-waves from the evolving
larger-scale flow. We demonstrate the NWP
application of this absorbing layer in a retrospective
forecast for a case of large-amplitude mountain
waves over the eastern slope of the Colorado
Rocky Mountains on 4-5 December 2007. From
about 12/04/07 12 UTC to 12/05/07 12 UTC,
strong downslope winds persisted along the eastern
slope of the Colorado Rockies; during this period,
the maximum winds at the NCAR Mesa site in
Boulder, Colorado were in the range 20-30 ms−1,
while at the NCAR Foothills site (260 m lower
elevation and several kilometers farther east) the
winds were 15-25 ms−1. For this case, we have
rerun the NCAR WRF/ARW real-time forecast
for the west-central U.S. (see http://www.wrf-
model.org/plots/realtime main.php) initialized at
00 UTC on 12/04/07. The model is run in a nested
configuration, with a 30 km grid outer domain
covering the continental U.S. and a 2200x2000 km
inner domain over the west-central U.S. with a 10
km grid as shown in Fig. 10. The initial fields were
interpolated from the 40 km NCEP NAM analysis,
while the boundary conditions for the outer domain
were interpolated from the NAM forecast. The
10 km nested domain is integrated with a 60 s
large time step and a 15 s small time step. This
period of 4-5 December was characterized by strong
west-northwestly flow over the Colorado Rockies
(about 20 ms−1 at 700 mb), which is conducive to
producing strong mountain waves and downslope
winds on the eastern slope.

In the numerical forecasts, significant terrrain-
generated gravity waves developed rapidly through-
out the Rocky mountains in response to the strong
tropospheric westerly flow. This is evident in the
vertical velocity cross section at z = 10 km at 12 h
in Fig. 10, particularly over the eastern slope of the
Colorado Rockies. The vertical cross section along
the line indicated in Fig. 10 is displayed in Fig.
11a and 11b at 12 and 30 h, respectively, for the
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Figure 10. Nested 10 km grid domain for retrospective forecasts initialized at 00 UTC 4 December
2007. The vertical velocity (red/blue shading) and horizontal velocity (wind barbs in knots) are
displayed at 12 h into the forecast at z = 10 km, with the top of the model domain set at 50
mb. The heavy blue line indicates the location of the vertical cross sections displayed in Fig.11.

simulation with the model top at 50 mb, with a 5
km deep absorbing layer beneath the top having a
maximum damping coefficient Rw = 0.2 s−1. At
12 h, the large amplitude standing mountain wave
above the eastern slope is clearly evident. The max-
imum updraft and downdraft velocities are about
±3 ms −1 on this 10 km grid, and the maximum
surface wind occurs about half way down the lee
slope, with a maximum of about 40 ms −1 at 12 h,
and decreasing to about 30 ms −1 at 30 h. Winds
at the base of the slope were around 20 ms −1 dur-
ing this period. For this configuration, we found
that while the absorbing layer had significant effect
in removing the gravity waves present in the lower
stratosphere, the corresponding simulation with no
absorbing layer (not shown) had virtually the same
wave structure throughout the troposphere. We be-
lieve this occurs because in this particular case the
large-amplitude waves in the troposphere overturn
and dissipate near the tropopause and thus are not
significantly affected by the presence or absence of
the absorbing layer in the lower stratosphere. Be-
cause of this relative insensitivity, we will treat this
simulation as a reference in further sensitivity test-
ing.

To achieve a more discriminating assessment
of the effects of the absorbing layer for this case,
we lowered the model top from 50 mb to 100 mb
(from 20 km to about 16 km). Including the
absorbing layer in the upper 5 km of the model
domain, we obtain a mountain-wave structure over
the lee slope of the Colorado Rockies at 12 and
30 h as shown in Fig. 11c and 11d, respectively.
In comparison to the deeper-domain simulation
(Fig. 11a-b), the wave structure throughout the
troposphere is quite similar, although the wave
amplitude just above the tropopause (∼12-13 km)
is clearly reduced as the absorbing layer becomes
stronger with increasing height. In contrast, the
simulation with the model top at 100 mb and no
absorbing layer (Fig. 11e-f) exhibits significant
distortion of the waves in the troposphere due
to wave reflection from the upper boundary. At
12 h, reflection of the primary wave is apparent
(Fig.11e) in the updraft over the lee slope that
spans the troposphere. With vertically radiating
wave energy, this updraft is continuous and tilts
upstream (westward) with increasing height, as in
the simulations with an absorbing layer (Fig. 11a
and 11c). However, in Fig.11e the updrafts and
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Figure 11. Vertical cross sections of flow over the eastern slope of the Colorado Rockies as indicated in Fig.10 for
retrospective forecasts initialized at 00 UTC 4 December 2007. The vertical velocity (red/blue shading), potential
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the implicit Rayleigh damping layer in the upper 5 km, and (e)-(f) the domain top at 100 mb with no upper absorbing
layer.
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upper boundary. By 30 h, the reflected wave energy
has also moved downstream of the primary wave
and further distorted the wave structure throughout
the vertical extent of the domain (Fig. 11f). Here,
we have not attempted to optimize the strength and
depth of the absorbing layer for this simulation, but
rather have configured the layer as might be done
in NWP models where there may be constraints on
increasing the height of the model top significantly
to accommodate an absorbing layer.

7. Summary and Discussion

Preventing the artificial reflection of gravity-
wave energy from the upper boundary of a
mesoscale simulation domain for NWP applications
remains a significant challenge. Here, we have pro-
posed a new formulation for an upper absorbing
layer that appears to function effectively across
the range of horizontal scales for which the ver-
tical propagation of internal gravity-wave energy
may be significant. This approach is designed for
split-explicit time-integration schemes and is imple-
mented as an implicit Rayleigh damping term for
the vertical velocity, applied as a final adjustment
step at the end of each small (acoustic) time step.
This procedure does not relax the flow back to a
specified reference state, as occurs in traditional ab-
sorbing layers in which Rayleigh damping terms are
applied to all of the dynamical prognostic variables.
The approach also is not restricted by the linear
stability constraints that limit the effectiveness of
absorbing layers that utilize second (or higher) or-
der diffusion to remove gravity-wave energy. While
the proposed absorbing layer does not reduce the
requirements for the depth of the layer (typically
one vertical wave length or greater), it does appear
better suited for use in the more complex environ-
ments of NWP applications.

In the example applications we have presented,
the values of Rw used for the respective simulations
were chosen with some experimentation to provide
the best overall behavior of the absorbing layer.
To provide more general guidance in selecting an
appropriate value for any particular application, we
return to the linear analysis for steady mountain
waves presented in section 3 (which also applies
to propagating waves) and replot the reflection
coefficient r as a function of the wavelength of the
gravity wave λH = 2π/k for specified values of Rw.
This is displayed in Fig. 12 for an absorbing layer
that is one vertical wavelength in depth. While the
length scale is written in dimensionless form, for
discussion purposes one can translate readily into
dimensional terms by interpreting the horizontal
axis labels as the horizontal wavelength in km
(i..e U/N ≃ 1000). Similarly, the dimensional
maximum damping coefficient Rw can be estimated
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Figure 12. Linear reflection coefficient r for a single wave
number displayed as a function of horizontal wavelength
λHN/U = 2π/K, for a Rayleigh damping layer one vertical
wave length in depth with having coefficients of magnitude
Rw/N = 2, 5, 10, and 20 for (a) α = 0.1, (b) α = 0.3, and
(c) α = 0.5.

from the dimensionless form Rw/N using N = 0.02
s−1 as a typical estimate for the stability in the
stratosphere. Since the reflection characteristics
also depend on α = kc∆τ = k∆xcr , we have
included plots for α = 0.1, 0.3, and 0.5. The
Courant number might typically be cr ≃ 0.5,
and thus α is in effect a measure of how well
a wave is resolved on the horizontal grid. For
example, in the simulations discussed in sections
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4 and 5, the dominant wave modes are generally
well resolved (about 30∆x) such that k∆x ≃ 0.2,
and α ≃ 0.1. Consequently, for these well-resolved
waves, Fig. 12a suggests that for horizontal wave
lengths greater than about 30 km, a value of
Rw/N ≃ 10 may be a reasonable estimate for the
Rayleigh damping coefficient, and that below 30
km, correspondingly smaller values of Rw should
be considered. For the mountain wave simulations
having mountain half-widths a = 2, 10, and 50 km
(and for which the dominant horizontal wavelengths
are 2πa), the Rayleigh damping coefficients that
appeared to provide the best overall results were
Rw/N ≃ 4, 15, and 5, respectively. These damping
coefficients are reasonably consistent with guidance
suggested above, although the value of Rw/N = 5
chosen for largest mountain width is somewhat
smaller than the “best” values suggested by the
curves in Fig. 12a. For the squall-line simulations,
Rw/N ≃ 10 appeared to give the best results, which
is in agreement with the optimal value in Fig. 10a
for a 40 km horizontal wavelength.

For waves that are not well resolved, the
effective value of α will be larger, suggesting that
smaller values of Rw should be considered, as
indicated by the curves displayed in Figs. 12b and
12c. For α = 0.3, Rw/N ≃ 5 appears to be the
best choice over the range of hydrostatic horizontal
scales, while for α = 0.5, Rw/N ≃ 2, becomes a
better overall value. We confirmed this behavior
by simulating mountain waves above a sinusoidal
(single wavenumber) mountain having a wavelength
of 120 km. For simulations with ∆x = 4 km
(α ≃ 0.1) and with ∆x = 20 km (α ≃ 0.5), we
verified (results not shown) that with an absorbing
layer one vertical wavelength in thickness, the best
radiation characteristics were achieved for Rw/N ≃
10 and Rw/N ≃ 2, respectively. In fact, the smaller
value of Rw/N mentioned above for the a = 50 km
mountain-wave simulation may also be consistent
with a larger effective value of α. Since the inertia-
gravity waves at these scales are dispersive, smaller
horizontal wavelengths begin to dominate in the
absorbing layer at high levels above the mountain,
corresponding to larger values of α that would
suggest a smaller value of Rw (i.e. as in Fig.12b).
For the NWP simulation in section 6, the prominent
mountain waves (λH ≃ 120 km) are moderately
resolved (α ≃ 0.25), and the value of Rw/N ≃ 10
used is consistent with values suggested by Figs.
12a-b.

The reflection coefficients discussed in section
3 and summarized in Fig.12 have been computed
assuming that the vertical structure of the wave
is well resolved on the computational grid. If the
vertical wave structure is not well resolved, the
proposed absorbing layer will be correspondingly
less effective. This is also true for other types of
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Figure 13. As in Fig. 12a except displaying the linear
reflection coefficient r for Rw/N = 10 for differing vertical
grid resolutions, expressed in terms of grid points per vertical
wave length, λz/∆z.

Rayleigh-damping or diffusion absorbing layers (i.e.
Klemp and Lilly, 1978). To illustrate the effect of
limited vertical resolution, we display in Fig. 13 the
reflection coefficient for α = 0.1 and Rw/N = 10 for
an absorbing layer that is one vertical wave length
in depth as a function of the number of grid points
per vertical wavelength [employing second order
finite differencing in evaluating (19)]. The curve
labeled ∞ thus corresponds to the curve in Fig.12a
labeled 10. Clearly, the reflection increases with
decreasing resolution, although even at eight points
per wavelength the reflection coefficient remain less
than 20 percent over most of the range of horizontal
scales shown. For NWP applications the vertical
grid stretching often results in limited resolution
near the top of the model domain. However, even
a partial elimination of wave reflection may have
substantial benefit, as evidenced in the mountain
wave simulation shown in Fig.11, in which both the
thickness of and the vertical resolution within the
absorbing layer are clearly suboptimal.

As mentioned in section 2, our proposed im-
plicit Rayleigh damping as an adjustment step (9)
in the split-explicit time integration is equivalent to
adding two terms directly in the vertical momen-
tum equation: an implicit Rayleigh damping term
for w and an implicit vertical diffusion of w [see eq.
(12)]. Thus, this damping layer could be actually
be implemented without significant additional com-
plication by evaluating these two terms as part of
the w equation, accommodating the vertical diffu-
sion term as part of the vertically implicit solution
for the vertically propagating acoustic modes. With
this approach, one would have the option of specify-
ing different coefficients for the two damping terms
for the purpose of further improving the overall per-
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formance of the absorbing layer. In practice, we
have not found any systematic benefit in specifying
different coefficients for these two damping terms,
even though one (the Rayleigh damping) acts more
selectively at relatively smaller scales and the other
(vertical diffusion) at larger scales. This conclusion
is based on recomputing the reflection coefficients
in Fig. 12 with differing coefficients for the two
damping terms (not shown), which is easily accom-
modated in the integration of (19). For α = 0.1
(Fig. 12a), choosing Rw/N = 5 for the Rayleigh
damping term and Rw/N = 20 for the vertical dif-
fusion term produced about the best result. How-
ever, in comparison to result with Rw/N = 10 for
both terms, the results are ambiguous; the reflec-
tion coefficient was somewhat lower for horizontal
scales less than 40 km, somewhat higher for scales
between 40 and 140 km, and about the same for
scales larger than 140 km. For waves that are not
as well resolved in the horizontal (α = 0.3 in Fig.
12b and α = 0.5 in Fig. 12c) the “best” values of
Rw/N at both large and small scales are similar,
suggesting that differing coefficients would not be
of much benefit. However, whether or not differing
coefficients are used, the numerical computation of
these two terms as part of the vertical momentum
equation could be beneficial in implementing this
absorbing layer for other non-timesplit integration
schemes (such as semi-implicit) in which an adjust-
ment step as in (9) might not be applicable.

Although these results provide some general
guidance for configuring the absorbing layer, for
practical applications, particularly for ones in
which there may be significant wave amplitude
over a range of horizontal wavelengths, we would
recommend some experimentation with the depth
of the absorbing layer, vertical resolution within the
layer, and variations in Rw to refine the coefficients
suggested in Fig. 12. This implicit Rayleigh
absorbing layer is included in the WRF/ARW
community release, beginning with version V3.0.
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APPENDIX

Linear wave equation in the mass coordinate

To document the behavior of implicit Rayleigh
damping on w in the mass-coordinate system,
we shall simplify the equations by considering
the linear equations under the same assumptions
as in the linear analysis of the height-coordinate
equations in section 3. For this purpose, we
express the terrain-following vertical coordinate in

terms of mean-state quantities [η = (ph − pht)/µ̄],
where ph is the hydrostatic pressure, µ̄ = p̄hs −
p̄ht, and subscripts s and t refer to the surface
and the top of the model domain, respectively.
Thus, η essentially reverts to the hydrostatic
pressure vertical coordinate in this linear system.
Adapting the linear mass-coordinate equations from
the Appendix of Klemp et al. (2007) for the
conditions considered in section 3, the small-time-
step equations that include the implicit Rayleigh
damping adjustment step are written as

u′τ+∆τ = u′τ − ∆τ
(

ᾱ∂xp
′τ

+ ∂xφ
′τ + U∂xu

′t − fv′t
)

, (A1)

∂η η̇
′τ+∆τ = −∂xu

′τ+∆τ , (A2)

θ′τ+∆τ = θ′τ − ∆τ
(

θ̄ηη̇
′τ+∆τ + U∂xθ

′t
)

, (A3)

φ′1 = φ′τ − ∆τ
(

φ̄η η̇
′τ+∆τ − 1

2gw
τ

+ U∂xφ
′t
)

, (A4)

wτ∗ = wτ + ∆τ

(

g

µ̄
∂ηp′

τ∗ − U∂xw
t

)

, (A5)

p′
τ∗

=
c2

ᾱ

(

θ′

θ̄

τ

+
1

µ̄ᾱ
∂ηφ′

τ∗

)

(A6)

φ′τ∗ = φ′1 + 1
2g∆τw

τ∗, (A7)

wτ+∆τ = wτ∗ −Rw∆τ wτ+∆τ
(A8)

φ′τ+∆τ = φ′1 + 1
2g∆τw

τ+∆τ , (A9)

where φ = φ̄ + φ′ is the geopotential, ᾱ refers to
the mean specific volume, and the boxed equation
(A8) is the Rayleigh adjustment step for w. Here,
(A6) represents the linear ideal gas law combined
with the hydrostatic pressure relationship. Terms
evaluated on the large time steps are denoted with
the superscript t. Notice that for this simplified
equation set the transverse velocity v′ is integrated
on the large time steps.

The procedure for advancing the small-time-
step equations forward in time proceeds in the
order of equations (A1)-(A9). Knowing all of the
variables at time τ : u′τ+∆τ is obtained from (A1);
η̇′τ+∆τ is determined from the vertical integration
of (A2); θ′τ+∆τ is computed from (A3); the known
portion φ1 of the geopotential equation is computed
using (A4); wτ∗ is recovered from the solution of a
tridiagonal matrix formed by combining the vertical
velocity equation (A5), the gas law and hydrostatic
equation (A6), and the geopotential equation (A7);
the implicit Rayleigh damping is applied in the
adjustment step (A8); and φ′τ+∆τ is updated from
(A9). At the end of the time step, p′τ+∆τ is
recovered by evaluating (A6) at the new time level.
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As in the height-coordinate system, including
the Rayleigh damping on w as an adjustment step
is equivalent to a Rayleigh damping term inserted
directly in the w equation plus an additional term
containing a second derivative in the vertical. This
is apparent in combining (A5)-(A9) to form a single
equation for the full small time step for w:

∂τw − g

µ̄
∂ηp′

τ
+Rww

τ+∆τ

− g2∆τ2

4µ̄2
∂η

[

c2

ᾱ2
∂η(Rww

τ+∆τ )

]

= −U∂xw
t. (A10)

To document the behavior of our Rayleigh
damping layer in the mass-coordinate equations
for the steady linear mountain wave considered in
section 3 (for the height coordinate), we write the
steady state form of (A1)-(A9), using (A10) to
represent the equivalent w equation for the full time
step. Using the same assumptions of small Mach
number and shallow atmosphere as in section 3, the
2D steady linear equations can be expressed as

U∂xu
′ + ∂xp̃

′ + ∂xφ
′ − fv′ = 0, (A11)

U∂xv
′ + fu′ = 0 (A12)

U∂xw − g

µ̄ᾱ
∂η p̃

′ +Rww

−c
2∆τ2

4

g

µ̄ᾱ
∂η

[

g

µ̄ᾱ
∂η(Rww)

]

= 0, (A13)

U∂xθ̃
′ − N2

g2
˜̇η
′

= 0, (A14)

˜̇η
′

+ gw = 0, (A15)

∂xu
′ +

1

µ̄ᾱ
∂η

˜̇η
′

= 0, (A16)

θ̃′ +
1

µ̄ᾱ
∂ηφ

′ = 0 (A17)

Following Klemp et al (2007), the perturbation
variables have been scaled by defining p̃′ = ᾱp′,
˜̇η′ = µ̄ᾱη̇′, θ̃′ = θ′/θ̄, and α̃′ = α′/ᾱ. Writing
the dependent variables ψ in terms of their Fourier

components ψ = ψ̂ exp(ikx)] and recognizing that
(g/µ̄ᾱ)∂η = −∂z, (A11)-(A17) can be combined
into a single equation for ŵ that is identical to
the wave equation (19) derived for the height-
coordinate system. Thus, the implicit Rayleigh
damping on w, applied as an adjustment at the end
of the small times step in a split-explicit integration,
has the same damping characteristics in both the
height and mass coordinate equation sets.
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