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1. Introduction 
As a fundamental process in fluid dynamics, 

advection is of central importance in atmospheric 
transport of energy, water and chemical species. In 
atmospheric modeling, numerical diffusion and 
dispersion errors induced by the treatment of 
advection can dominate over related physical 
processes. Especially, sharp gradients and 
discontinuities in scalar quantities, such as cloud 
condensation nuclei (CCN) number concentration, 
cloud water mass and droplet number 
concentration, make the numerical treatment of 
advection more challenging. Without adequate 
treatment of this problem, simulations of cloud and 
precipitation processes could be ambiguous or 
misleading. Hence, when numerically modeling 
advection, the aim is to minimize diffusion and 
dispersion errors, provided the scheme’s stability 
and efficiency are acceptable.  

In the officially released version 3.0 of the 
Advanced Research Weather Research and 
Forecasting (ARW) model, the advection of scalars 
is performed using the third order Runge-Kutta 
(RK3) time-integration scheme (Skamarock et al. 
2008). Spatial discretizations for momentum and 
scalar advection are accurate to 2

nd
 through 6

th
 

order. The even-order schemes contain no implicit 
numerical diffusion, while the odd-order schemes 
are inherently diffusive with a diffusion term 
proportional to the Courant number. However, the 
even-order schemes tend to be more dispersive 
(e.g., Anderson and Fattahi 1974). The basic RK3 
scheme is conservative, but it is neither positive 
definite (PD) nor monotonic. PD means that no non-
physical negative mixing ratios are generated by 
the advection scheme, while monotonicity implies 
that the scheme does not generate new minima and 
maxima. For cloud-resolving modeling studies and 
many other applications it may be desirable to use 
monotonic advection schemes for scalar transport. 

In this study, both PD and monotonic limiters 
(Skamarock 2006; Zalesak 1979), as described in 
the appendix, are applied to the basic RK3 scheme  
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and are evaluated by examining the advection of 
passive tracers, CCN and cloud droplets in three-
dimensional large-eddy simulations.  
 
2. Numerical Experiments 

Large-eddy simulations (LES) of marine 
stratocumulus clouds were performed using the 
ARW model (Skamarock et al. 2008) including the 
treatment of aerosol-cloud interactions. A double-
moment warm-rain microphysical scheme initially 
developed by Feingold et al. (1998) has been 
modified and incorporated in ARW V3.0. This 
scheme uses lognormal basis functions to 
represent CCN, cloud droplet and drizzle drop 
spectra. Details of the microphysical scheme and 
initialization of model simulations are described by 
Wang and Feingold (2008).  

Six numerical experiments (RK53, PD53, 
MO53, RK64, PD64 and MO64) with different 
advection schemes were conducted in a 10 x 10 
km

2
 domain with a uniform grid spacing of 100 m in 

the horizontal and ~30 m in the vertical. In the 
experiment names, “RK”, “PD” and “MO” indicate 
use of the basic RK3 advection with no limiter, with 
the PD limiter and with the monotonic limiter, 
respectively. The horizontal flux calculation is 
accurate to 5

th
 (6

th
) order and the vertical to 3

rd
 (4

th
) 

order, as denoted by “53” (“64”). TKE closure is 
used to calculate the sub-grid scale scalar diffusion. 
Periodic boundary conditions are assumed in both 
the x and y directions. The model depth is 1.5 km 
with a damping layer in the upper 250 m. Given the 
wind speed of about 10 m s

-1
 and the time step of 1 

s, the Courant typical number is small, about 0.1.  
Passive tracers were initially homogeneously 

distributed in four cubes with concentration of 1 and 
zero elsewhere in the model domain. Each cube is 
2.5 x 2.5 x 0.9 km

3
 in volume. Mass and number 

concentration of cloud droplets and rain drops are 
predicted using the double-moment microphysical 
scheme. The initial CCN number concentration was 
assumed to be 100 cm

-3
 for the entire model 

domain. Aside from transport, activation of cloud 
droplets is the only sink and evaporation of drops is 
the only source of CCN. No replenishing source is 
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Figure 1: Horizontal cross section of tracer concentrations at about 750 m after 600 time steps (10 minutes) 
for experiments (a) RK53, (b) RK64, (c) PD53, (d) PD64, (e) MO53, and (f) MO64 with superimposed wind 
vectors. 
 
 
used. Hence, only drop collection and precipitation 
can deplete CCN. 
 
3. Results 

Figure 1 shows the horizontal cross section of 
the tracer concentration field 10 minutes into the 
simulation. As expected, without any flux limiter the 
basic RK3 advection scheme produces significant 
spurious oscillations inside and outside of the tracer 
cubes. Negative tracer concentrations are produced 
near the sharp gradients. The PD limiter removes 
negative values but oscillations still exist. The local 
maxima inside the cubes are amplified by up to 
30%. The monotonic limiter not only prevents 
negative tracer concentrations but also effectively 
avoids overshooting and preserves the sharp 
gradients. When the advection schemes with higher 
even-order accuracy are applied, numerical 
dispersion errors are larger than in corresponding 

lower odd-order ones. The ripple waves become 
stronger and shorter. Moreover, numerical diffusion 
errors are clearly seen inside the tracer cubes in the 
case with monotonic limiter. These test results 
indicate that the 5

th
 (3

rd
) order horizontal (vertical) 

approximation for spatial derivatives performs better 
than the 6

th
 (4

th
) order scheme. 

A similar response of the CCN and cloud 
droplet number concentrations (CDNC) to the 
different advection schemes is observed. However, 
because these scalars are actively involved in 
physical processes, it is unwise to compare 
instantaneous fields in a point-by-point manner as 
given for the passive tracers in Figure 1. Figure 2 
shows the frequency distribution of CCN 
concentration and CDNC at the end of the 4

th
 

simulation hour. Although CCN in the boundary 
layer have been highly depleted by activation and 
collection processes, a significant number of grid 

(a) RK53 (b) PD53 (c) MO53 

(d) RK64 (e) PD64 (f) MO64 
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volumes above the boundary layer have CCN 
concentrations greater than 100 cm

-3
 in both the 

RK53 and PD53 cases. Compared to the monotonic 
limiter, the PD limiter causes significant reductions 
in CDNC and CCN concentration in the boundary 
layer. Shifts in the frequency peaks are clearly 
seen. The median value of CCN concentration 
(CDNC) for RK53, PD53 and MO53 is 63.0 (19.3), 
55.1 (10.1) and 65.7 (17.6), respectively. We expect 
that the PD limiter and the monotonic limiter could 
have substantially different impact on cloud 
microphysical and macrophysical properties due to 
both scalar advection and feedbacks through 
physical processes. For example, the lower CDNC 
in PD53 compared to MO53 could accelerate the 
formation of precipitation, which would result in 
further reductions in CCN and CDNC.   

 
 
 

     
 

 
 
 
Figure 2: Histogram of CCN concentration and 
cloud droplet number concentration (CDNC) at the 
end of the 4

th
 simulation hour for RK53, PD53 and 

MO53. 
 

Figure 3 shows an example of how the PD 
limiter may lead us to misunderstanding of the 
cloud physical processes. Physically, higher 
concentrations of CCN right above cloud top derive 
from evaporation of detrained cloud droplets. With 
the monotonic limiter CCN concentrations are 
enhanced by up to 3%. However, the PD limiter 
highly exaggerates this physical effect. The CCN 
concentrations above clouds are enhanced by up to 
20%. As a result, CDNC and CCN concentrations in 
and below cloud are reduced, as also shown in 
Figure 2.   

 
 

 
 

 
 
Figure 3: Vertical cross section of total particle 
(CCN + drop) number concentration (shaded 
colors) at the end of the 4

th
 simulation hour for 

PD53 (top) and MO53 (bottom); Orange lines 
represent the 0.01 g kg

-1
 cloud water mixing ratio 

contour.  
  
 
4. Summary 

The basic third-order Runge-Kutta (RK3) time-
integration scheme, together with positive definite 
and monotonic limiters based on flux 
renormalization, has been tested for scalar 
transport in fine-resolution ARW simulations. 
Without any flux limiter the RK3 scheme produces 
spurious oscillations in scalar concentrations. 
Clipping of non-physical negative values destroys 
the scalar conservation by retaining amplified local 
maxima. Appling the positive-definite flux limiter not 
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only removes the negative values but also reduces 
the oscillations. However, amplification of local 
maxima is still as large as 30%. These numerical 
dispersive errors can cause problems directly and 
indirectly through feedbacks with physical 
processes. The monotonic limiter applied to the 
RK3 scheme, described in the appendix, effectively 
minimizes the dispersive errors at a cost of 8% 
more computational time, compared to 7% due to 
the PD limiter. No significant enhancement of 
numerical diffusion error is noticed, likely, because 
the Courant number was small. 

Another set of simulations tested the impact of 
different order-of-approximation for spatial 
derivatives in advection schemes. Overall, 
simulation results show that the lower odd-order 
accuracy of the advection schemes cause less 
numerical dispersion error than even-order ones.  

In summary, the sensitivity tests in this study 
suggest that the RK3 scheme with a monotonic flux 
limiter using 5

th
 (3

rd
) order horizontal (vertical) 

accuracy is recommended for scalar advection in 
ARW model, at least for fine-resolution cloud 
modeling such as that presented here.  
 
5. Appendix 

The PD limiter has been described in 
Skamarock and Weisman (2008). Here we focus on 
describing the formulation of monotonic RK3 scalar 
transport in the ARW model. The final step of the 
discrete integration of scalar conservation equation,  
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where φ  is the scalar mixing ratio, µ  the column 

mass, F the flux of φ  and S the source/sink term 

(i.e., the physical tendencies and explicit mixing).  
**

ii xx Fδ  denotes the centered flux divergence 

operator in the ith coordinate direction at the 

previous RK3 step, 2/tt ∆+ . When introducing the 

monotonic limiter (Skamarock 2006), Eq. (2) is 
replaced by  
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 Here 
***1

ixF  is the first-order upwind flux 

computed using Eq. (3a), and the high-order flux 

correction 
**cor

xi
F  is calculated as  
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The renormalized high-order flux correction 

)(
**cor

xi
FR  is obtained through the following 

procedure. First, the scalar mass is updated using 
Eq. (3a) and the first-order upwind fluxes as 
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Next, minimum and maximum updated mass are 
estimated using 
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where ( )
+
 and ( )

–
 denotes outgoing and incoming 

flux, respectively. Finally, renormalization of the 
outgoing and incoming high-order flux correction is 
done by 
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where maxφ  and minφ  are maximum and minimum 

scalar mixing ratio in central and upwind cells at 
time t.  

After applying Eqs. (7a) and (7b) to Eq. (3b), 
formulation of monotonic RK3 advection scheme is 
completed.  
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