
1

11.1 HOW THE NCSA/LEAD
 WORKFLOW BROKER MANAGES COMPLEX WORKFLOWS

 Jay C. Alameda1, Albert L. Rossi1, Shawn D. Hampton1, Brian F. Jewett2, Robert B. Wilhelmson1,2,
 1National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign
 2Atmospheric Sciences Department, University of Illinois at Urbana-Champaign

1. Supporting the very wide workflow

Over the course of approximately six years of work
directed at supporting high-performance applications in
meteorology, chemical engineering, astronomy and
even the analysis of financial markets, we have
developed and tested a number of variations on what
might be referred to freely as a “service-stack”
architecture encompassing, on one end, the user entry
point, and on the other, the high-performance-resource-
resident execution of application code (of which WRF is
one well-tested example). While it is true that there now
exist a myriad of scientific workflow systems, some of
them exclusively client-side, some distributed, having
many features and goals in common with ours, our work
has perhaps distinguished itself by its ever-increasing
focus on the management of very wide workflows,
where the number of nodes (i.e., jobs) comprising a
single submission is in the hundreds to many
thousands, with these to be scheduled variously and
efficiently across an array of resources as part of a
single scientific experimental analysis. In particular, we
have sought to support the “ensemble” or parameterized
analysis: that is, the exploration of a large space of
input permutations. This capability is currently used for
idealized- and real-data parameter studies with WRF.

With a view to both configurability by the user and
scalability, we have recently added two important
features to our system: first, the elaboration of such
workflows through a condensed XML description to be
expanded inside our workflow engine (“Parametric
Workflow Engine” or PWE), and second, a means of
circumventing the barrier raised both by batch systems
(on the submission window: it was our experience that
to submit 100 members to the queue alone took
upwards of 15 minutes), and the number of separate file
movement and execution calls necessary to stage and
launch multiple jobs. Inspired by the concept of the
glide-in pioneered by Condor, we have devised a new
application container which works in conjunction with a

  

*Corresponding author address: Jay C. Alameda,
National Center for Supercomputing Applications,
University of Illinois, 1205 W. Clark St., Urbana, IL
61801; e-mail: jalameda@ncsa.uiuc.edu

common data-store (a LINDA-like tuple-space) in order
to explode a single batch submission into k-
parameterized members, each doing a different version
of work on some partition of the total processors
allocated to it. This is a significant improvement in
reliability and efficiency over submitting large numbers
of jobs to production batch systems.

Figure 1: Infrastructure Architecture

2. Summary of the Components
2.1 PWE (Parametric Workflow Engine)

The principal player in this system is PWE, the logic
engine which manages the state of the workflow by
determining when nodes (e.g. WRF jobs) can run,
configuring and launching them when they are ready,
storing any output passed back to it from ELF and
making this available to successive nodes. The service
is directly queriable, so that the state of any given
workflow can be inspected at any time; its API also
allows for the manual cancellation and restarting of
individual nodes or of the entire workflow.

PWE can be extended with any number of modules
supporting payload type (currently just ELF running
Ogrescript), submission type (currently local exec on the
host where the service is located, or remote via GSISSH
or SSH) or platform protocol (currently interactive
launches to LINUX/UNIX machines and batch submissions
to LSF or PBS; we will soon be adding LoadLeveler).

2

When a workflow contains a parametric node*, but this is
to be run interactively or on a machine where it is not
feasible to do a glide-in, the individual members are
submitted as separate jobs. Where glide-in through a
batch system is supported, however, these additional
steps take place:

1. The member-specific parameters are wrapped
into an (XML) configuration object, and these
are all stored in a common data service (a
tuple-space);

2. A single glide-in container is submitted through
batch on their behalf;

3. When this container begins to run, it takes the
available configurations from the tuple-space,
merges them with whatever configuration is
common to all these members, partitions the
total available processors/cores allocated to it
among theses members, and launches them
through a mechanism appropriate to the
machine architecture (for instance, a simple
exec on an SMP machine, or an SSH to a
back-end node on a distributed-memory
machine).

2.2 VIZIER (Data/Information Services)

This trio of services provides information to PWE vital to
the scheduling and configuration of workflow nodes
(Host Information), furnishes a history of events
published over the event bus (Event Repository), and
allows for the distributed many-membered configuration
of ELF/Ogrescript jobs (Tuple Space).

2.3 ELF/Ogrescript

The execution of application codes, along with the local
logic in which they are embedded, take place via
Ogrescript run inside of the ELF container.

Ogrescript is a highly extensible XML scripting language
which not only provides full programming flow of control
features (conditions, loops, parallelism, join, sleep, wait,
exception handling, etc.) and evaluation of variables or
arithmetic-logical expressions in a scoped environment,
but also a series of standard plugin modules for
common programming tasks (file movement, string
operations, system calls, events, etc.), along with some
particularly hard-to-find capabilities useful in the context
of Fortran-based applications (e.g., a set of tasks for
parsing, modifying and writing out namelist files).
  
*An example of a WRF parametric workflow could be a
multiple-physics and/or multiple-data parameter study.

The standard ELF container runs Ogrescript directly; the
ELF glide-in container, however, acts as a monitor,
pulling work (even as it becomes available) from the
Tuple Space service and turning it into individual ELF
jobs on the compute resources it has in its possession.

2.4 Event Bus and Metadata

The event bus in our system is strictly a mechanism for
publishing provenance, metadata or debugging
information (we now do not rely on it for critical state
transitions).

It has been our experience, in fact, that the remote
events produced by PWE and ELF are extremely
convenient when debugging a distributed workflow, for
usually (though not always) a problem can be
immediately diagnosed simply by retrieving the events
(through SIEGE) and inspecting them. It is only when
these Java-based events are insufficient (such as for
more arcane system-, network- or protocol-level errors)
that the user is constrained to go directly to the remote
resource and inspect additional log files for potentially
revelatory information.

To a large degree the quantity of logging/debugging
information made available as remote events can be
configured for any given workflow by setting the event
level attribute. When turned down, the debugging
information goes only to local log files and is not
transmitted as events over the bus. This is crucial, in
fact, when long-running, complicated or many-
membered workflows are run, for traffic may otherwise
exceed what the event bus can actually handle.

2.5 SIEGE

The user interacts with our services through this desktop
client, which is a standalone RCP (Eclipse) application.
Siege runs on Linux, Windows and Macintosh systems.
Siege currently has two main perspectives, or views:
the PWE perspective for launching and monitoring
workflows, and VIZIER perspective for configuring Host
Information entries, inspecting, deleting or adding tuples
to the Tuple Space service, or for retrieving events from
the Event Repository. In addition, there is a Repository
view associated with both perspectives; this view is
keyed to a local directory (e.g. on a userʼs laptop)
designated as the repository, where XML conforming to
well-defined models (most importantly, the workflow-
builder XML) can be stored and edited for eventual
submission to the services. The next section
demonstrates some typical usage scenarios for these
perspectives.

3

Figure 2. Siege: Submitting Workflow

Figure 3. Siege: Viewing Workflow Summary

Figure 4. Siege: Viewing Workflow Details

3. Summary and Future Work

The PWE system is currently used or planned for use in
atmospheric sciences, astrophysics and other fields.

Scientific workflows may include nodes executed serially
or in parallel, with dependencies or children, and with
parameterization possible over text (e.g. file names),
integers (e.g. namelist physics options), real numbers
(such as runtime parameters), or a combination thereof.

Parameterized “glide-in” submission is now in alpha-
testing, and will hopefully prove useful on a number of
different machine architectures, including the AIX/Load
Leveller -based Blue Waters project at NCSA. In the
upcoming months we intend to address the following:

1. The addition of logic-programming type rules for
pruning a parametric expansion. In many cases, a
dense matrix of values is not necessary, and if the
user can express the exceptions, we can avoid
producing and running those members
unnecessarily.

2. The implementation of a metadata agent and a
corresponding perspective in SIEGE for querying
over stored metadata from experiments or runs.

3. The addition of a namelist perspective in Siege in
which the programmatic manipulation now available
through Ogrescript can be harnessed manually by
the user to create namelist files.

4. The addition of a workflow composition perspective
which will allow the user to assemble all but the
Ogrescript part of the workflow description via
widgets or wizards.

5. The integration of real scheduling modules into
PWE. We would like to be able to submit to an
external scheduler a set of open-ended requests
based on resource requirements, and get back
resource names on which those requirement can be
met inside a determinate time window. Batch-
Queue Predictor and the MOAB scheduler are
candidates for further exploration in this regard.

4. Acknowledgments

Workflow broker development has been supported by
LEAD, a Large Information Technology Research (ITR)
grant funded by NSF under the following Cooperative
Agreements: ATM-0331594 (Univ. of Oklahoma), ATM-
0331591 (Colorado State Univ.), ATM-0331574
(Millersville Univ.), ATM-0331480 (Indiana Univ.), ATM-
0331579 (Univ. of Alabama in Huntsville), ATM03-
31586 (Howard Univ.), ATM-0331587 (Univ. Corporation
for Atmospheric Research), and ATM-0331578 (Univ. of
Illinois at Urbana-Champaign, with a sub-contract to the
Univ. of North Carolina). This work has also been
supported by SCI03-30554, SCI04-38712, and SCI96-
19019.

