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1. Introduction 

 
At NCAR, real time forecasting experiments with 

a 4-km grid mesh over the central US employed the 
WRF-Single-Moment 6class (WSM6) Microphysics 
scheme that replaced the Purdue Lin (PLIN) 
scheme in early 2005. Both schemes have the 
same number of prognostic water substance 
including graupel. Although some preliminary 
reports identified the overall superiority of the 
WSM6 to the PLIN scheme in resolving 
precipitating convective systems (e.g., Klemp 2006, 
Kuo 2006), reasons for the different behaviors have 
not been clarified.  

The goal of this research is to understand the 
importance of microphysics, especially ice-phase 
microphysics processes in the bulk 
parameterization. The performance of the WSM6 
microphysics will be evaluated, compared to that of 
the PLIN scheme, focusing on the major differences 
in the treatment of ice properties and their 
sedimentation velocity. Section 2 provides overall 
differences between the WSM6 and PLIN schemes. 
In section 3, the numerical experiments conducted 
in this study are described, with their results being 
discussed in section 4. Concluding remarks appear 
in the final section. 
 

2. Comparison of the WSM6 and PLIN 
schemes  

 
The most important difference in the two 

schemes is the treatment of ice-phase 
microphysical processes (Table 1). The WSM6 
scheme treats the ice crystal number concentration 
( IN ) as a function of cloud ice amount ( Iqρ ), and 

the ice nuclei number concentration ( 0IN ) is 

separated from IN , whereas the PLIN scheme uses 

the formula of Fletcher (1962) for both IN and 0IN . 
Related changes for the ice-phase microphysics are 
described in HDC. In addition to the distinguishing 
differences in ice-microphysics devised by Hong et 
al. (2004), the production and generation terms for 
the water substances in the two schemes differ.  

Another apparent difference is the treatment of 
the snow and graupel sedimentation. As in Hong 
and Lim (2006), the mass weighted terminal 

velocity for graupel in the WSM6 scheme,
GV , is 

given by  
 
                (1) 
 

 
where 

Ga  and 
Gb  are the empirical coefficients for 

terminal velocity, 
Gλ the slope parameter, ρ the 

density of air, and 
0ρ the density of air at reference 

state. The PLIN scheme also employs the same 
formula, but the different coefficients, 

Ga and
Gb  (see 

Table 1). It is seen that the mass weighted terminal 
velocity for graupel, 

GV , is about twice as fast in the 
PLIN scheme than in the WSM6 scheme. The 
terminal velocity for snow, 

SV  , is also different, but 
not significantly. Thus, major differences in the 
WSM6 and PLIN schemes can be categorized by 
the 1) ice-phase microphysics based on HDC and 2) 
terminal velocity for graupel. The relative 
importance of the two components in the WSM6 
and PLIN schemes will be investigated. 

 
Table1. Major differences of the microphysics parameterization 
between the WSM6 and PLIN schemes 
═══════════════════════ 

WSM6                             PLIN 
─────────────────────── 
Ice number concentration, -3(m )IN   

7 0.755.38 10 ( )Iqρ×    2
010 exp[0.5( )]T T− −  

 
Ice nuclei number, -3

0 (m )IN         
3

010 exp[0.1( )]T T−     2
010 exp[0.5( )]T T− −  

 
Snow intercept parameter, -4

0 (m )Sn  6
02 10 exp[0.12( )]T T× −       

63 10×  

 
Density if graupel 3( )G kgmρ −             500                                        400 
 
Constant 

Ga                                            330                                       82.5      
 
Constant  

Gb                                            0.8                                         0.5  

─────────────────────── 

3. Numerical Experimental Setup 

 The model used in this study is the Advanced 
Research WRF version 2.1.2. Two sets of 
experiments were carried out: an idealized 2D 
thunderstorm case and a 3D real-data simulation of 
a heavy rainfall event over Korea. The 2D idealized 
thunderstorm experiment was designed to 
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in the 3D run. The corresponding differences in 
temperature, and specific humidity are not directly 
explainable in this 3D run framework, but it is 
distinct that the changes due to the microphysics 
are larger than those due to the sedimentation 
velocity (c.p. Fig. 5c and 5d).  

A reason for the different effect between the 2D 
and 3D runs can be deduced from the different 
thermodynamic environments. In the model relative 
humidity is a variable for evaporation with the 
assumption that modeled raindrops are assumed to 
be at the same temperature as the air. For example, 
in the 2D case, layers around the freezing level are 
nearly saturated because of strong updrafts, so that 
the melting process is more efficient than the 
evaporation of the graupel, and vice versa due to 
lower relative humidity in the 3D case.  

Another reason can be deduced from the 
interaction between the ice clouds and radiation. 
The reduction of ice particles through faster 
sedimentation of graupel in the WSM6_vg run 
increases short-wave radiation reaching the surface, 
which results in warming the lower troposphere (Fig. 
5c). The reduction of cloud ice in the PLIN physics 
also brings about the increase of solar radiation at 
the surface (Fig. 5d). As a result, the decrease of 
the stability within the entire troposphere in the 
PLIN scheme provides a favorable environment for 
convective activity. Both effects enhance the 
buoyancy for triggering convection, leading to 
enhanced rainfall at the surface, but with a larger 
impact by the ice-phase microphysics than by the 
fall velocity. This may be due to that fact that ice 
cloud has a stronger cloud/radiation feedback than 
other ice particles since areal coverage for ice is 
relatively large. 

 
(a)                                              (b) 

 
Fig. 6. The 24-hr accumulated rainfall (mm) ending at 00 UTC 
15 July 2001, from the (a) WSM6_nora experiment and the 
(b) difference (WSM6 minus WSM6_nora). 

 
To further confirm the role of the revised ice-

microphysics in the WSM6 scheme, another 
sensitivity experiment that excludes the cloud-
radiation feedback is conducted. In Fig. 6, it is seen 
that the WSM6 scheme without the cloud-radiation 
feedback shifts the major rain band northward, 
which is the same way as was simulated by the 
PLIN scheme. By comparing the three results from 
the WSM6, PLIN, and WSM6 without radiation 
feedback experiments, it can be deduced that the 
southward displacement of the simulated 
precipitation in the WSM6 scheme, as compared to 

that from the PLIN scheme, is due to the enhanced 
ice cloud amounts and their radiation feedback. 
These are further explained below. 

Increased ice cloud above leads to the reduced 
longwave cooling in the upper troposphere, which 
shows as a relative warming effect below 200 
mb. Cooling above 200 mb is also enhanced due to 
the increased longwave cloud-top effect. 
Additionally, the decrease of downward solar 
energy induces a cooling near the surface. This 
stabilization effect appears broadly from south to 
north across the precipitation band. Thus, the air to 
the north has less chance for forming clouds since 
temperature is colder and relative humidity is drier 
with latitude. The air to the south is still buoyant, 
although the surface is cooler. As a result, the 
WSM6 scheme tends to stabilize the atmosphere, 
as compared to the PLIN scheme, which enhances 
(suppresses) vertical motion to the south (north). 
This effect is smaller in the comparison of the 
WSM6 and PLIN schemes, but still visible. Due to a 
reduced amount of ice-clouds in the PLIN scheme, 
the cloud-radiation feedback would be weakened in 
the PLIN scheme, and consequently, the WSM6 
scheme displaces the rainband south through an 
enhanced feedback between clouds and radiation 
processes. 

 
5. Concluding remarks 
 

This study provides the relative importance of ice-
phase microphysics and fall velocity for ice particles 
in the bulk-type parameterization approach of 
clouds and precipitation, and sheds some light on 
the clouds and radiation interaction in forming 
precipitating convection. Comparing WSM6 with 
PLIN, also implies that the impact of the complexity 
in the microphysics due to the number of prognostic 
water substance variables on simulated convective 
activity is smaller than the effects of the manner in 
which each microphysical process is formulated in 
the same category of prognostic water substance 
variables. 

Finally, it is important to note that the bulk 
schemes being compared were the WSM6 and 
PLIN schemes within WRF which are relatively 
similar bulk schemes, indicating that the findings of 
this research are specific to these schemes. 
Despite such a restriction, our findings for the 
relative role in ice-phase microphysics and its 
sedimentation velocity are certainly useful.  
 

The content of this paper is based on the study of 
Hong et al. (2008, J. Applied Meteorology and Climatology, 
in review), and the new unified velocity proposed in this 
study was announced in WRF version 3.0. 
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