
An Ensemble-Based Four-dimensional Variational Data Assimilation Scheme 
 

Chengsi Liu1,2, Qingnong Xiao*1, and Bin Wang2 

1. ESSL/MMM, National Center for Atmospheric Research, Boulder, CO 

2. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 

 

1. Introduction 

The incremental approach of four-dimensional 

variational (4D-Var) data assimilation (Courtier et al. 

1994) and Ensemble Kalman filters (EnKF, Evensen 

1994) are well known as two advanced data 

assimilation approaches. As a retrospective 

assimilation algorithm, 4D-Var can gain the optimal 

trajectory and can effectively assimilate non-synoptic 

data (Xiao et al. 2002; Simmons and Hollingsworth 

2002). EnKF, on the other hand, can use 

flow-dependent background error covariance (B 

matrix) calculated from ensemble forecast and can 

be easily implemented without tangent linear and 

adjoint models. In recent years, approaches of 

coupling the two data assimilation algorithms have 

been proposed, e.g. Ensemble Kalman Smoother 

(Evensen et al. 2000), maximum likelihood ensemble 

filter (Zupanski 2005), and 4DEnKF (Hunt et al. 2004; 

Fertig et al. 2007). These approaches use the 

flow-dependent B matrix based on statistics from 

ensemble forecasts while maintain retrospective 

assimilation character. Liu et al. (2008a) presented 

an ensemble-based four-dimensional variational 

(En4D-Var) algorithm, which uses the 

flow-dependent B matrix constructed by ensemble 

forecasts and performs 4D-Var optimization. This 

approach (En4D-Var) adopts the incremental and 

preconditioning idea in variational algorithm so that it 

can be easily incorporated in many operational and 

research communities’ variational assimilation 

system. In addition, En4D-Var avoids tangent linear 

model and its adjoint, the two components that are 

difficult to develop and that make 4D-Var 

minimization computationally expensive. 

 

2. Theoretical background of En4D-Var  

 

The idea of En4D-Var is that the preconditioning 

matrix in the incremental approach of 4D-Var (Courtier et 

al 1994; Gilbert et al 1989) is replaced with a 

perturbation matrix. The column of perturbation matrix, 
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The background error covariance B is approximately 

calculated by  
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Assuming the innovations at different times (with 

subscript i) are calculated by 

   
d

i

= HM (x
b

) ! y
i

,            (3) 

where xb is background state vector, H is observation 

operator, M is forecast model and y is observation state 

vector. The En4D-Var cost function in control variable 

space is defined by 
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where w is control variable, I is the total number of time 

levels on which observations are available, H is tangent 

linear observation operator, M is tangent linear forecast 

model and O is observation error covariance. 

To avoid tangent linear and adjoint models in 

calculating the gradient of cost function, we transform 

the perturbation matrix to observation space via
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The gradient of the cost function is then calculated by 
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After minimization iteration, the optimal analysis xa 

can be obtained from  
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3. Horizontal and vertical localization in 

En4D-Var 

In order to reduce sampling errors due to finite 

ensemble numbers, Houtekamer and Mitchell (2001) 

employed Schur operator (Gaspari and Cohn 1999) in 

EnKF, and Lorenc (2003) and Buehner (2005) used 

Schur operator in variational scheme. In En4D-Var, we 

introduce an EOF decomposed correlation function 

operator to modify the perturbation matrix, 
  
!X
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. This is 

an approach similar to spatial localization of Buehner 

(2005). The modified perturbation 
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 is defined by 
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In Eq. (8), the subscripts h and v are horizontal and 

vertical indices. E contains all of eigenvectors and !  

is a diagonal matrix that the diagonal elements are 

eigenvalues. The eigenvalue is obtained from EOF 

decomposed correlation function C, 

 C = E!E
" .                (9) 

The new perturbation matrix (8) used in En4D-Var is 

equivalent to the modified B matrix by correlation 

function in EnKF (Appendix A of Liu et al. 2008b), e.g. 

Schur product operator, 
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We adopt the compactly-supported 

second-order auto-regressive function as horizontal 

correlation model (Liu and Rabier 2002), i.e. 
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where s stands for the spherical separation in degree 

between two data points, s0 and s1 are the correlation 

scale and the cut-off distance beyond which the 

correlation become zero. To perform vertical 

localization, we use a correlation function following 

Zhang et al. (2004),  
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In (12),   ! log p  is the distance between two vertical 

levels in   log p , and p is pressure. 

 

4.  Observing system simulation experiments with 

the blizzard of 2000  

 

The WRF-ARW (Skamarock et al. 2005) was 

used for this study. All experiments are conducted over a 

grid mesh of  94 ! 94  with grid-spacing of 27 km. the 

domain covers the eastern half of United States. In the 
vertical, there are 27 !  layers. The control run (CTRL) 

is conducted by integrating the first-guess at 1800 UTC 

23 Janunary 2000 for 42 hours. The random 

pertubations are added to the first-guess of CTRL to 

produce.37 ensemble members. One member, which 

compares most favorably to observations in terms of the 

location and strength of the cyclone is chosen as true 

simulation and the other members are treated as 

reference forecast ensemble. The random pertubations 

are derived from the background error covarince of the 

WRF 3D-Var data assimilation system, with the similar 

approach to the initial ensemble generating method in 

Houtekamer et al (2005). The pertubations are therefore 



consistent with the background error covarince 

defined by the WRF 3D-Var data assimilation. We 

also perturbed boundary conditions using the Data 

Assimilation Research Testbed (DART) system 

(Anderson 2001; 2003). 

a. Test of the En4D-Var localization technique 

To perform localization, we introduce the 

correlation function operator in the B matrix. However, 

when the correlation function operator is applied to 

En4D-Var, the control vectors are enlarged and the 

computation cost becomes very expensive. In order 

to reduce the computation cost, EOF is used to 

decompose the correlation function and limited 

truncation modes are selected.  

We employ a single observation test to 

examine the En4D-Var localization technique in this 

study. The single temperature observation at 33.5oN, 

78.4oW and 850-hPa are assimilated using WRF 

3D-Var, En4D-Var without localization 

(En4D-Var-NL), and En4D-Var with localization 

(En4D-Var-L). The results of wind vector and 

temperature increment at 1000-hPa are shown in Figure 

1. The temperature analysis increment in WRF 3D-Var 

(Fig.1a) indicates a homogeneous and isotropic 

structure that the B matrix of WRF 3D-Var has. Due to 

the quasi-geostrophy relationship in the variable 

transform of WRF 3D-Var, the wind analysis increments 

show quasi-geostrophy characteristics in the single 

temperature observation assimilation experiment. On the 

other hand, Figs. 1b and 1c demonstrate flow-dependent 

B matrix structure in En4D-Var. The temperature 

analysis increment in En4D-Var extends along the 

eastern coast, corresponding to the flow direction and 

isotherm (not shown). Different from the constraint of 

variable transform technique in WRF 3D-Var, the 

relations among different physical variables in En4D-Var 

depend on ensemble statistics. The increments of wind 

vectors in En4D-Var also show some quasi-geostrophy 

characteristics (Figs. 1b and 1c), which indicates 

quasi-geostrophy constraint between temperature and 

winds in En4D-Var is presented well by ensemble 

statistics.  

 

 
Figure 1: The response increments of wind vector and temperature increment (shadow) at 1000-hPa.from single 

observation test with (a) WRF 3D-Var, (b) En4D-Var without localization, and (c) En4D-Var with localization. 

 

If no localization is performed in En4D-Var 

(Fig. 1b), a lot of increment noises are found due to 

sampling errors. This has been discussed in section 

1. The amplitude of these noises can be comparable 

with the increment signal at observation location. 

Using localization by the EOF decomposed 

correlation function operator, the noises almost 

disappears but the increment signal from observation 

is still maintained (Fig. 1c). Figure 2 shows the 

vertical profile of temperature analysis increment at 

observation location by En4D-Var-NL and En4D-Var-L. 

At the high levels, there is obvious fake analysis 

increment if the localization isn’t applied but the noise is 

filtered out after localization. Although the noises can be 

filtered out by localization technique, the analysis 

increment signal is also a little reduced compared to the 

one without localization because limited modes are used. 

However, the major analysis feature is retained since 



over ninety percent signal is still maintained. 

 

b. Comparison of En4D-Var and En3D-Var cycling 

 

En4D-Var is an ensemble-based retrospective 

algorithm. If no sampling errors are considered, the 

En4D-Var analysis fits to the optimal trajectory. 

However, it does not necessarily fit to each single 

optimal point as ensemble-based sequential 

algorithm provides. The temporal sampling errors can 

affect En4D-Var analysis as discussed in previous 

discussions of this paper. In order to compare the 

ensemble-based sequential and ensemble-based 

retrospective algorithms, we design the En3D-Var 

cycling experiment that uses the same configuration of 

En4D-Var but assimilates only one-time observation 

each time and cycles all the observations in the 

assimilation window.

 
Figure 2: Corresponding to Figure 4, the vertical profile of temperature increment at the observation location by 

En4D-Var-NL (circle-line) and En4D-Var-L (cross-line) 

 

 
Figure 3: The variation of domain-averaged RMSE in CTRL (square-line), En3D-Var (circle-line) and En4D-Var 

(cross-line) with time for (a) U winds, (b) V winds, (c) temperature, and (d) humidity. The star-line is the variation of 

forecast-analysis spread statistics with time in En4D-Var. 



 

Figure 3 shows the time variations of the 

domain-averaged RMSE in the analyses of CTRL, 

En3D-Var cycling and En4D-Var. It is clear that the 

error in CTRL suddenly rises after 1800 UTC 24 and 

become stable after 2100 UTC 24. But the humidity 

error still slowly increases until 0600 UTC 25. It is 

found that the overall performance of En4D-Var is 

better than that of En3D-Var, indicating that the 

ensemble-based retrospective algorithm possesses 

more robust ability than ensemble-based sequential 

algorithm. The time variation of forecast-analysis 

spread statistics in En4D-Var is also plotted in Figure 

3. At first two cycles, it is obvious that the 

perturbation spread is larger than RMSE. After the 

third cycle, however, the perturbation spread is a little 

less than RMSE, which means the filter divergence 

also exists in En4D-Var. The filter divergence seems 

more serious in humidity analysis (Fig. 3d) because 

the humidity perturbations are controlled within small 

amplitude in our experiments in case of 

over-saturation or negative humidity. It suggests a 

better humidity perturbation method should be 

explored in the future. Another reason for the 

humidity analysis divergence is humidity spatial and 

temporal scales are less and it is more sensitive to 

sampling errors. Adding inflation factor (Anderson 

1999) can be expected to relax the filter divergence 

problem. 
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