
P8.2 DEFINITIONS OF DETERMINISM

Brian J. Gaudet�// Pennsylvania State University, University Park, PA 16802

1. BACKGROUND – MEAN SQUARED ERROR

A common meteorological method of assessing the
skill of a forecast model � at predicting a set of observa-
tions � is the mean-squared error (MSE), or its square
root, the root-mean-square (RMS) error. The MSE may
be decomposed into (e.g., Murphy and Epstein 1989):
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For a given set of observations, the MSE is a func-
tion of �� , �� , and ���. If the corresponding statistics ��
and �� of the observations are stable and known, it is
easy to construct a function whose statistics �� and ��
tend to minimize the MSE, if this is the only goal (e.g., in
linear regression). In contrast, ��� measures the match
between individual � and � values and generally cannot
be improved without increasing the skill of � in predicting
�.

The overall minimum MSE score is zero, and is
achieved with �� � ��, �� � ��, and ��� � �, which oc-
curs if and only if � and � are identical. It is also easy to
show that as �� approaches ��, and as ��� approaches �,
the MSE uniformly decreases for fixed �� . However, for a
fixed �� and ��� � �, there is a specific value of �� � ��
that minimizes the MSE (namely, �����). Paradoxically,
further increasing the value of �� towards the observa-
tional value �� makes the MSE worse. This can be traced
to the fact that squaring the error penalizes outward ex-
cursions from the true value more than it rewards inward
excursions of the same amount, so the MSE tends to fa-
vor forecasts with small variability magnitude versus ones
with large variability. We find this occurring when, for ex-
ample, smoothing a forecast time series reduces its RMS
error, even though no new information has been provided
by the model.

The extreme case occurs when ��� � �, meaning
that forecast perturbations are completely uncorrelated
with observational perturbations. Here the minimum MSE
is achieved with �� � �� and �� � �, or, in other words,
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a constant forecast of ��. Any additional forecast variabil-
ity will only worsen the MSE by an amount � �

� . The only
skill information remaining in the MSE value is � �� � ����,
which is the square of the bias. It may also be argued that
in a physical model (such as WRF-ARW) it is worthwhile
to compare the magnitude of forecast statistical variability
with that of the observations, and to expect that the two
be as close as possible. This is the situation if the obser-
vations correspond to a second-order stationary random
variable, where the mean and variance of the observa-
tions have well-defined stationary values, but the actual
value at a particular time is assumed to be random. A
common example is when the model’s forecast precipita-
tion field correctly predicts a field of isolated convective
cells, but cannot predict their precise locations.

2. TYPES OF NON-DETERMINISM

We hypothesize that in a high-resolution (e.g., one
minute sampling period) time series of wind spectra the
low-frequency components are deterministic and can be
verified with traditional measures such as the MSE, while
the high-frequency components are non-deterministic,
and should be verified statistically. This leads to two
questions: a) What do we mean by determinism? b) How
do we determine a time scale that separates the two com-
ponents?

Invoking determinism or the lack thereof occurs in a
variety of contexts. In atmospheric dynamics we gener-
ally make the classical physics assumption that if a flow
field is known precisely its future evolution is theoretically
deterministic. However, proving that the incompressible
Navier-Stokes equations have smooth global solutions in
3D given any initial velocity is one of the unsolved millen-
nium problems of the Clay Mathematics Institute. Next,
there is the phenomenon called ’intrinsic predictability’
(Lorenz 1969; Zhang et al. 2006). For certain nonlinear
systems the physical evolution is completely determinis-
tic (Lorenz (1963)), but because the evolution dynamics
exhibit sensitivity to initial conditions and bounded trajec-
tories, infinitesimal uncertainties in an initial state tend
to lead to qualitatively different states at later times than
the one for which the initial state is known exactly. This
type of unpredictability leads to essential nondetermin-
ism after time scales determined by the error exponen-
tial growth rate of the evolution equations. This unpre-
dictability can be seen as a property of the system rather
than the observer, because if the system possesses cer-
tain properties, only measurements with infinite precision
can avoid qualitative unpredictability at finite times. In ef-
fect the most important parameter is the error growth rate
which is determined by the system. For timescales much
less than the error growth timescale, though, the system



is said to be predictable.
In contrast to ’intrinsic predictability’ is ’practical pre-

dictability’, whose absence can lead to nondeterminism
even in linear systems. Limits to practical predictability for
weather predictions are related to finite errors in the initial
or boundary conditions, whereas intrinsic predictability is
limited by infinitesimal errors.

Finite errors do not necessarily imply a failure in the
design or physics of numerical forecast models, although
they can. Most mesoscale models incorporate initial
and boundary conditions from coarser-resolution mod-
els; hence features that would normally be resolved in
the mesoscale model domain are often absent initially
or away from boundaries. These absences are poten-
tial sources of error. At the other extreme of scale,
mesoscale model variables must be viewed as grid-
cell averages, so subgrid fluctuations are not explicitly
predicted and cannot be deterministically forecasted by
them. The Reynolds-averaged effects of these fluctu-
ations can be predicted using turbulence parameteriza-
tions, but ultimately closure assumptions must be made,
which could introduce errors on the averaged scale as
well. Also possible are surface features (terrain, land-
use) which may exist at scales less than the grid spac-
ing but may have an important effect on observations.
Finally, even for features technically represented in the
mesoscale domain, if their scale is less than a certain
threshold, the numerical solution will differ appreciably
from the true solution, and will not be a reliable forecast.
Skamarock (2004) refers to this as the model’s ’effective
resolution’.

3. HEURISTIC NONDETERMINISM

For practical NWP applications we must first decide
whether an observation set � is deterministic. This is
stated as follows: no forecast � is consistently correlated
with �, unless � is explicitly a function of �. Thus for
all � �� 	��� we expect ��� � � if � is nondetermin-
istic. A stochastic (random) variable is nondeterministic,
and is characterized only by its statistical moments (e.g.,
mean, variance) or its probability distribution (which could
be derivable from a large number of statistical moments).
However, as noted above, if ��� � � the MSE actually
penalizes forecasts with a variance � �

� � ��� if ��� is in-
creased toward ��

�. Thus the MSE is not appropriate for
assessing the forecast value of a stochastic variable, and
measures of the closeness of fit of statistical moments
should be used instead.

By introducing ’heuristic nondeterminism’ we are ac-
knowledging that the real world is not divided into ob-
served variables which show clear MSE-based skill and
other clearly stochastic variables for which ��� is always
zero. However, we still would like to implement some rea-
sonable criterion for separating variables for which the
MSE score alone is appropriate from those for which sta-
tistical measures should be used, based on limits of prac-
tical predictability. It is always possible, of course, that
poor correlations are the result of poor or at least tech-
nologically primitive forecast models rather than an in-

tractable feature of the observations. We may still find
it useful, though, to classify phenomena that resist pre-
dictability by state-of-the-art models as heuristically non-
deterministic, until proven otherwise.

One criterion for heuristic nondeterminism can be
stated as follows. In the special case where �� � ��
and �� � ��, it can be shown from (1) that when:

��� 
 ��	� (3)

the MSE of � against � exceeds that of the ’climato-
logical’ forecast �� � ��, or equivalently, the fluctuating
forecast component � � has a better MSE score against
�� than the trivial � � � �. When (3) is applied to gen-
eral NWP forecast models, it indicates that the variance-
scaled fluctuating forecast component, ��� ���� , has a
better MSE score than � � � �. Furthermore, when (3)
is true it can be shown that any multiple of � � between �
and ����� has a better MSE score than � � � �.

By contrast, if (3) is violated, then the forecast model,
after bias-correction and variance-scaling, has a worse
MSE score than �� � ��. In fact, ��� ���� would have a
worse MSE score than �� � for any � � � � ����� . If this
situation persists over many realizations, we take this as
an indication that statistical-moment verification is more
appropriate and hence the MSE is inappropriate.

Murphy and Epstein (1989) used essentially the same
criterion as (3) to determine if a forecast model has skill
in the special case of �� � ��, and also noted the pos-
sibility of degrading the MSE score while improving the
forecast of ��.

4. APPLICATION – AVERAGING METHOD

In view of the above, we hypothesize that because lim-
its exist on practical predictability, there is a frequency
within � such that features in its spectra at higher fre-
quencies are heuristically nondeterministic, while fea-
tures at lower frequencies are deterministic. There are a
number of reasons why this might be the case. Consider
� to be a time series of wind observations at a point.
The observations might include turbulence that occurs at
higher frequencies than the scales resolved in NWP mod-
els. In the very stable boundary layer, mesogamma scale
or ’sub-mesocale’ variability (Mahrt et al. 2008) occurs at
longer timescales than turbulence (i.e., greater than tens
of seconds) but still may not be well resolved by numerical
models. Even if they can be resolved on the finest model
grid, features at this scale probably will not be present
in the initial or boundary conditions, or they may be in-
fluenced by topographic features that are not resolved.
We will use the criterion (3), composited over synopti-
cally similar cases,to determine the appropriate timescale
of separation between deterministic and nondeterministic
components of �.

If we perform an orthogonal, complete decomposition
of the forecast and model time series (i.e., a discrete
Fourier transform), then we can apply the MSE equation
(1) to each orthogonal mode individually. If our hypothe-
sis is correct then all modes above a particular frequency
will have ��� � ��	.



A first attempt at doing this is shown in Figure 1. We
examine the time series of  and � (with respect to model
grid coordinates) using model output from Domain 4 of
the WRF-ARW configuration of Seaman et al. (2008)
and local tower observations for 07 Oct 2007, at ap-
proximately 9 m above the surface. The time series of
one-minute averaged data covers the period 0100 - 1200
UTC. The method for imposing a cutoff filter at a particu-
lar frequency is to perform a running average over a time
window corresponding to that frequency, and then stor-
ing the residual as its high-frequency component. This
method is convenient but does not possess a perfect
wave cutoff frequency, as it is rounded in Fourier space
and introduces some high-frequency sidelobes. Also,
we examine only a single case here to demonstrate the
method, but an ensemble of cases is needed to establish
confidence in a derived cutoff frequency.

Despite these caveats, for the running-averaged 
field we see that the maximum predictability occurs
around 2.5 hrs in the figure, where the correlation is about
0.8. Somewhere around 45 minutes is the point at which
the correlation of the averaged  field falls below 0.5 for
this particular case.

The averaged � field suggests a heuristic determinis-
tic cutoff of about 1.5 hrs, with a correlation coefficient of
0.6. The skill for both fields begin to decline for averaging
windows of 2 h and greater. Meanwhile, the residual field
correlations oscillate but generally maintain low values
within ����, as expected for high nondeterministic fre-
quencies. At the largest averaging windows the residual
components begin to exceed this range, however, sug-
gesting that we are beginning to incorporate determinis-
tic modes into the residual. Hence for our demonstration
case the use of a filter scale of 2 hours is appropriate.

5. CONCLUSION

Different methods of determining the validity of fore-
cast models may be required depending on whether the
forecast variable is presumed to be random, or to be
generally predictable in its occurrence. We have used
a heuristic method to determine the time scale of high-
resolution wind fields separating deterministic and non-
deterministic components. In the process we have also
tried to clarify some of the implications of predictability on
the use of meteorological verification measures.

For the sample case of wind speed in a stable bound-
ary layer, we find the relevant time scale is about 2 hours.
Naturally, defining a broadly applicable timescale requires
application of the methodology to a larger number of
cases, which is work that is currently in progress.
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Figure 1: Correlation coefficients between WRF-ARW simulations on a 0.444-km grid at 9-m elevation and 9-m tower
data, for case of 07 Oct 2007 case. Comparison is between both filtered and residual components of observations with
model output for the time period 0100 - 1200 UTC.


