

Evaluation of United Arab Emirates WRF two-way nested model on a series of thick coastal fog situations

Ghantoot pile-up caused by thick fog on March 11th, 2008

Introduction

on 11 March, 2008, early morning, a very thick fog occurred along the highway linking Dubai and Abu-Dhabi. At 06:00 local time (02:00 GMT), almost all the weather stations along the western U.A.E. coasts reported less than 100 meters visibility. Such a situation is usually happening at this period of the year. but this time, it caused a horrific traffic accident killing and injuring many people and burning more than 200 vehicles.

This event, among multiple others, is denoting the great influence of weather phenomena in general and visibility drop as a particular most aggressive constraint for the economic and social activities in Emirates. The predictability of such phenomena is becoming among the first priorities

The forecasts of fog occurrence, its extent, duration, and intensity are difficult in practical because fog is a boundary layer phenomenon which generally shows large variability in time and space. As the boundary layer is driven and initially set up by the synoptic scale behavior, the forecast of fog is, to a first approximation, determined by the general circulation. However, fog occurrence is often governed by mesoscale features as determined by regional characteristics of, and contributions from, the boundary layer. The diagnosis and prediction of these interactions are taken into account inside the current WRF version through a set of planetary boundary layer physics schemes. But ractions may be complicated by microphysical processes within and outside fog patterns.

Every where in the world, fog prediction is a real challenge for any weather forecasting centre. The techniques used are generally depending on the local type of weather, climatology of the region, type of fog and geographical specificities. The experience of the local forecaster is generally central and beneficial when dealing with local and specific phenomena. But nowadays, scientific improvements in numerical weather prediction models made them very helpful in depicting even very small and delicate weather activities. These improvements are made especially at the levels of physics parameterizations. initialization methods and grid resolutions. United Arab Emirates Weather Centre is relying on WRF model for almost al

its forecasting tasks. The operational characteristics of such system are detailed in Ajjaji and Al-Katheri, 2007. U.A.E./WRF is making its own data assimilation based on the three dimensional variational analysis using the technique of First Guess at Appropriate Time (FGAT) and taking benefit of a large number of local observations not transiting through the GTS. FGAT is very helpful in dealing with fog prediction because it takes benefit of the information coming from frequently reported observations like METAR and RADAR

Observation nudging could also be turned on in conjunction with 3D-Var. A series of sensitivity experiments based on this system are conducted in this study to assess the quality of UAE/WRF when dealing with fog and visibility drop predictions. This excludes visibility drop due to dust load which is another common feature of U.A.E. weather and whose prediction is performed actually using a dust model based on Nickovic et al

using a down moder based on inucative et al. The experiments are measuring the impact of each ingredient among the existing options in the WRF version 3 package related to physics parameterizations (Nine microphysics schemes, four shortwave and long wave radiation schemes, three planetary boundary layer schemes and four land-surface models), horizontal resolution (nested 40 km, 13.3 km, 4.4 km and 1.4 km), vertical resolution (38, 45 and 60 Eta hybrid levels), assimilation techniques (cold start using GFS analysis, warm start using FGAT, cold start with nudging). Some new WRF options, which were released with the recent version 3, are also tested like Pleim and Xiu physics options; dynamic time stepping and digital filter initialization.

The experiments are concerning only one fog situation having occurred on early 11 March 2008. But, the best combination found for the above mentioned configurations is tested on six other fog cases

Generally fog occurs when southerly hot air masses affect UAE and Gulf Sea during all the day time and cause huge amount of humidity close to the sea surface due to evaporation, and with the inversion of the flow to cold and light north westerly generated by sea breeze during the early afternoon time, these huge quantity of water vapor condensate close to the surface

over the marine and coastal areas.

Main February – March 2008 fog situation

U.A.E. WRF model characteristics YBU soheme Nosh LSM YOU -----

sics (top) and plane

Best choices

Lin et al., WSM

RRTM/Dudhia

YSU, MYJ, Pleir

Noah, THE

4.44 km, 1.4 km

38 lovels

WRF-3DVAR-FGAT

RRTM/Goddard

WRF ingredient tested

GFDL/GFDL)

Horizontal r km, 1.4 km)

WRF-3DVAR-FGAT)

Pleim Goddard Thomson Morrison) Shortwave Radiation and Longwave Radiation

Vertical resolution (38, 45, 60 levels)

Initial State (GFS cold start, GFS + Nudging

RRTM/Dudhia, RRTM/Goddard, CAM/CAM.

Planetary boundary Layer (Yonsei University Mellor Yamada Janjic, Pleim, MRF)

Surface Land Model (Noah, Thermal diffusion RUC)

tal resolutions (40 km, 13.33 km, 4.44

Micro-Physics (WSM3, WSM5, WSM6, Lin et al.,

10-03-2008 10-03-2008 00:00 00:00 20 30 10-03-20 0 00:00 30

RRTM RRTM

Yansei Yansei Yonsei 1 University University University Uni

ARM 20 VAR Two-wa 28 ARW 3D VAR Teo-way 38

Noah LSM 4 layers FGAT 4 Noah LSM Noah LSM N 4 lagers 4 lagers FGAT FGAT Noars range Specarity assessing WSMN, GCE, TMS, MCR

ARW 3D-VAR Teo-easy 38

RRTM

Experimental Design

			_																		
108	THE	MOR			GOR	OAM	OFOL	874	NRF.	PLEM		1110	890	0101		LEVE	LEVID		Miner also had a bada as to a	Posta al a confidence	
0.00	10-03-2008	10-03-2008 00:00		Hart Time	10-03-2008	10-03-2008	10-03-2008	10-03-2008	10-03-2008	10-03-2008	Start Time	10-03-2008	10-03-2008	10-03-2008	10-03-2008	10-03-2008	10-03-2008		micro-physics hydrometeors	Extinction coefficient	Adopted
30	30	30			00.00	00.00	00.00	00.00	00.00	00:00	Frank	20	20	20	20	20	20		Cloud liquid water (CLW)	$\beta_{cv} = 144.7C^{}$	SD VAD ECAT SHOULD Should
					~	~	~	~	~	~	rango								Rain water (KW)	$\beta = 1.1C^{0.79}$	
W3D-	ARW SD- VAR	ARW SD- VAR		teleficit anteles	ARW2D-	ARM 2D-	ARW 3D-	ARM 2D-	ARW 1D	ARW 3D-	initial elate	ARW 1D-	ARW 3D-	GFS cold	ARW 3D-	ARW SD-	ARW 3D-		Claud in (CD	a unanditt	Cycling type meeuro
o-way	Two-way	Two-way		-	VAR	VAR	VAR	VAR	VAR	VAR	Continue	Tecnar	Tax-way	Ten-way	Teorway	Two-way	Teorete		cross ce (cr)	$\beta_{ci} = 163.90$	GINFOR+6
28	28	28			- and	- markey	increasy	in the second	inter way	increasy	Vec.	28	28	28	28	- 45			Snow (SN)	$\beta_{cs} = 10.4C^{0.78}$	
				Resident State	"	-	-	-	-	-	Recolution									$-\ln(0.02)$	CONFORMED T
acture of the second se	Thompson	Bernaca			Lin et al.	Linet al.	Linet al.	Lin et al.	Lis et al.	Lin et al.	pingen a	Lin et al.	Linet at	Longtat	Line a.	Lood at.	Lin et al.		Stoelinga and Warner	$VIS(meter) = \frac{m(vist)}{a}$	CO-VIE POIT
				No.	and so its and		-	Duthia	Outbia	Outlin	the form	Dudhia	Dudhia	Dudhia	Duthia	Dudhia	Dudhia			P_s	
athia .	Duritia	Outbia		Red.		_					Receiption								(islowity	$\beta_s = \beta_{cw} + \beta_{cw} + \beta_{si} + \beta_{sn}$	
-				Longourne	PRETER	018	0701	RRTM	RETM	RRTM	Red allow								Relationship between the mass	concentration (C sm ⁻¹)	and the second sec
RIM	RRTM	RRIM			Managel	Manual	Warned	-	-		Planetary	Yonsei	Yansei	Yansei	Yassei	Tonesi	Yossei	Yossai	and the extinction coefficients (& bu ⁻¹)		
insei	Tonsei Tonsei			Desidery	University 1	University	University	Tenada			Boundary	University	y University University	University	uty University	University	University		and the extinction coefficients ()	2,600 J	
versity U	University	University		Laper				- Angle			-	Thermal	6 RUC 6	NubLSM	Noah LSM	Noah LSM	Noth LSM		NOAH / FSL Visibility	$VTE(-d_{1}) = coop T - T_{d}$	
0.158	No.ob.I GM	August I State			layers	layers	layers layers layers		layers	Noah LSMI 4 Lapaca	Subamo	Diffusion 5	layers	4 layers	4 layers	4 layers	4 layers		$V13(Mulc) = 6000. \frac{1}{RH^{175}}$		OTE OFE BADAR Shotme short
apers	4 layers	4 layers		Andalistics	FGAT	FOAT	FOAT	FOAT	FGAT	FGAT	And and a second second	FOAT	FGAT	FOAT	Nutaino	FOAT	FOAT		All and the second second second second		The last state of the last sta
GAT	FGAT	FGAT		Description of the WRC 10 hours forecasts assessing the invest of closed particle investigations for the WRC 20 hours forecasts assessing the invest of land particle models (IND and RUC).														Visibility is an empirical function of remperature, dew			
e impace a	f microphysi	ice (OPR, LIN,		(HTL), MRF, PLEIN) and Reductor (SDR, CAM, GFOL) initialization methods (SFSL NDO), and vestical resolution (LEV6).														point temperature and relative humidity			
													-								

Results

analysis, b) GFS analysis with 3 hours nudging, 3L UVAR-FGAT in warm start, with the (24.88° N, 54.85° E) on 00:00 UTC

and c) by run, and d) the

Summary

This study tested a series of scientific options offered by WRF version 3 having an influence on tog predictability. These options comprise the entire physics alternatives especially at the levels of microphysics, planetary boundary layer, shortwave and longwave radiation, surface layer model. The impact of different vertical and horizontal resolutions was also fetched. Different initialization methods using cold start, cold start with mudging and wave mater with first guess at appropriate time, were examined. The series of experiments conducted are dealing with a thick fog case study which took place on late night of 10 March 2008 and early morning of 11 March 2008 and covered the major south western coastal parts of U.A.E.

- The main results obtained are summarized as it follows: 1. Planetary boundary layer physics and land surface models play a key role in fog depiction. The most reliable options in the context of U.A.E. region are Yonsei University for PBL and Noah for USM.
- wave and longwave radiation affect also the fog occurrence. Rapid Radiative Transfer Model as longwave and Dudhia as shortwave are the best. Goddard shortwave lead

Shortwave and longwave malation affect also the fog occurrence. Rapid Radiative Transfer Model as longwave and Duchina as shortwave are the best. Goddard shortwave lead also to good results.
Almost all the microphysics schemes are valid, but Lin et al. scheme presents more satisfactory fog predictability potentiality.
Hontoral results.
Almost all the microphysics schemes are valid, but Lin et al. scheme presents more satisfactory fog predictability potentiality.
Hontoral results.
Vertical resolution does not affect fog occurrence but finar resolution laad to beter fog location and intensity predictions. Vertical resolution should be taken with care since
Using GFS analyses as initial states for the model give bad results if the spinup period is abort. When using a GFS initial state, the folg occurrence are well predicted in the ranges beginning from 24 hours and haved. Ranges test hand 24 hours are affected by the spinupspindown problem. Observational nurging have all model is beneficial, includes the advantage of nucligit, but it incorporates the different sources of information in a nore complicated and coherent way permitting the creation of a mail scales features inside the analysis. These small scales are crucial in positioning subsequently the fog patterns accurately and orienting the creation of a mail scales features inside the analysis. These small scales are crucial in positioning subsequently the fog patterns accurately and orienting the creation of a mail scales features inside the analysis. These small scales are crucial in positioning subsequently the fog patterns accurately and orienting the creation of a mail scales features inside the analysis. These small scales are crucial in positioning subsequently the fog patterns accurately and orienting the creation of a mail scales features inside the analysis.

NOVILLEDGMENT This work was supported by the United Arab Emirates Air Force and Air Defense and the United Nations D from the U.A.E. National Center of Meteorology and Seismology for having provided us with fog satellite im ent Programme at Abu-Dhabi, U.A.E. We thank our colleague