Implementation and testing of WRF DFI

Steven Peckham, Tanya Smirnova, Stan Benjamin, John Brown, Xiang-Yu Huang, Min Chen, and Michael Duda

Outline

- What is DFI
- Why use DFI
- DFI development and examples
 - Past work on WRF V2.2
 - What went into WRF V3
- Future work

What is DFI?

- Digital Filter Initialization (DFI) is not:
 - Interpolation scheme,
 - Bogusing of data,
 - Quality, or buddy checking,
 - Or an analysis technique
 - Nudging,
 - Optimal Interpolation,
 - 3D-Var, 4D-Var

• etc.

What is DFI?

- Roger Daley (Atmospheric Data Analysis, 1991): *"Integration of the primitive equations requires the modification of the initial state to prevent the excitation of inertia-gravity modes. This process is called initialization."*
- Examples of initialization methods:
 - Nonlinear Normal Mode Initialization (Machenhauer, 1977, Williamson and Temperton 1981)
 - Digital Filter Initialization (Lynch and Huang, 1992)
 - By applying a simple filter to a sequence of values centered on the initial time, an effective noise control can be achieved within a relatively short time span.

Why use DFI?

- To remove noise due to the imbalances between the momentum and mass
 - The imbalance can be introduced through objective analyses, or interpolation.
- To produce initial fields consistent with the model's dynamics.
 - e.g., hydrometeors, vertical velocity
- Can be used to reduce the spin-up time for clouds and precipitation (if not available in the initial conditions)
- Advantages:
 - Relatively simple to implement in the model and to use
 - Works for forecasts/simulations starting with files from WPS
 - Changes to the numerical model are automatically applied to the DFI
- Disadvantages:
 - Adds additional computational time
 - Filter too much/too little (some tuning may be necessary for a specific application)

Example from WRF V2.2 DFI

Without DFI

With DFI

Initial **surface pressure tendency** (**shaded**) of the first cycle in hPa/3h and sea level pressure (contoured) in hPa for the no DFI simulation (left) and the with DFI simulation (right). (Huang et al. 2007, WRF workshop)

Example from WRF V2.2 DFI

- Results from early version of WRF DFI showed:
 - A satisfactory amount of noise reduction
 - A reasonable reduction of model spin-up
 - Improved conventional observation verification scores
 - Improved precipitation scores

Huang et al. (2007, WRF workshop)

WRF DFI: Beyond V2.2

NOAA/ESRL DFI efforts

– DFI applied in RUC model –

- Adiabatic DFI used in NCEP RUC 1998
- Diabatic "twice-DFI" used in NCEP RUC 2005
- Initial assistance from Xiang-Yu "Hans" Huang
- Essential for RUC 1-h intermittent assimilation cycle
- Do not use all of the filtered variables in favor of analyses

WRF DFI: Beyond V2.2

NOAA/ESRL DFI efforts

- Needed DFI for RUC to WRF-Rapid Refresh transition
 - No use of restart files after filtering
 - Appropriate for operational applications
- Added DFI namelist variables
 - Allowed for different DFI options
- Followed WRF coding guidelines
 - Commit code to WRF repository
 - Additional flexibility for future development

Twice-Digital Filter Initialization implemented into WRF ARW (Tanya Smirnova and Steven Peckham, NOAA/ESRL)

WRF-13km Rapid Refresh over N. American domain

Noise = domain mean absolute sfc pressure tendency (hPa/h)

500mb Height 3-h Fcst for 03Z 30 Oct 07

Away from terrain and deep convection, height contours are smoother with DFI

WRF DFI: Towards V3

- NOAA/ESRL and NCAR Collaboration
 - Added the best features from both to WRF V3
 - From NCAR
 - DFI options
 - DFI window functions
 - From NOAA/ESRL
 - No restart files after filtering
 - Followed WRF coding guidelines
 - Design that facilitates possible future NMM application

Examples from WRFV3 DFI

- Simulations made at NOAA/ESRL
 - 13 km horizontal grid spacing
 - North America domain
- DFI
 - Twice-DFI option and Dolph2 window function.
 - 80 minutes DFI time window (40 minutes backward integration)
- DFI uses roughly 10% of the computational time for a 12 hour fcst.
 - Results may vary

700 mb Height; 0 h forecast

700 mb Height; 3 h Forecast

Future work

- NOAA ESRL interested in adding additional functionality to WRF DFI
 - Option to add/delete fields from filtering (e.g.,clouds) if analysis is available
 - Weygandt et al. (presentation 2.4) showing impact of adding radar information

Summary

- Digital Filter Initialization available in WRF ARW V3
- Quick and efficient initialization methodology
- Applicable for downscaling initial conditions (e.g., 40km NAM to 2km WRF)
- Easy to use set namelist variables
- Several options and window functions to choose from
- Reduces gravity wave noise and improves forecast skill
- Suitable for operational forecasting and research will be used in WRF-based Rapid Refresh
- Possible to adapt to user's need
- Tutorial and technical documentation available soon (already?)

DFI Options in WRF V3

DFI functions in WRF V3

- Besides the DFI option, one can select the window function
 - In WRF, one can use:
 - Uniform
 - Lanczos
 - Hamming
 - Blackman
 - Kaiser
 - Potter
 - Dolph (Dolph-Chebyshev)
 - Dolph 2

<= Recommended

Recursive High-Order