

WRF "Obs-nudging" Updates, Verification and Plans for the Future Developments

Yubao Liu, Josh Hacker, Gregory Roux, Alfred Bourgeois, Wanli Wu, Wei Yu, Francois Vandenberghe, Mei Xu, Jimy Dudhia, Tom Warner, Scott Swerdlin

National Center for Atmospheric Research, Boulder, CO, USA

Lili Lei, Aijun Deng and Dave Stauffer

Department of Meteorology, Pennsylvania State University, College Station, PA, USA

Thanks to the numerous modelers, engineers, forecasters, and managements at Dugway Proving Ground, Utah, and the National Center for Atmospheric Research at Boulder, Colorado.

- WRF3.0 "obs-nudging" features and updates
- An introduction to Ensemble-RTFDDA
- "Obs-nudging" study with E-RTFDDA outputs
 - MM5 versus WRF
 - NAM versus GFS
 - Impact of physics schemes and other model uncertainties
- Comparison of WRF "obs-nudging" with community MM5 through a controlled case study
- Plans and on-going developments

- Assimilate T, U, V and RH from any platforms
- Use different data weight algorithms for vertical profile-type data, point-wise upper-air observations, and surface observations
- Many built-in physically-based spatial weight constraints

New in WRF3.0:

- Assimilate different data for nested domains
- Permit domain-dependent influence radii and time windows, besides nudging coefficients
- Double-scan (mimic successive correction OA)
- Code/namelist/printout cleaning and adjustments
- Bug fixes and more

Description of 30 Members of DPG E-RTFDDA

E#	LBC	WRF Members (15)	
1	NAM	Control: WRF baseline physics	
2	GFS	Control: WRF baseline physics	
3	NAM	SLAB land surface	
4	NAM	MYJ PBL	
5	NAM	MYJ PBL + GD Cumulus	
6	NAM	WMS6 microphysics	
7	NAM	GD cumulus	
8	GFS	Thomason microphysics	
9	GFS	MYJ PBL + WMS5 microphysics	
10	GFS	MYJ PBL	
11	GFS	MYJ PBL + GD Cumulus	
12	GFS	BMJ cumulus	
13	GFS	BMJ cumulus in 3.3 km grid	
14	GFS	GD cumulus in 3.3 km grid	
15	GFS	KF cumulus in 3.3 km grid	

E#	LBC	MM5 Members (15)
16	NAM	Control: MM5 baseline physics
17	GFS	Control: MM5 baseline physics
18	NAM	Simple cloud-effect radiation
19	NAM	ETA TKE PBL
20	NAM	Kain-Fritsch cumulus
21	NAM	Goddard microphysics
22	GFS	Betts-Miller cumulus
23	GFS	Reisner 3-ice microphysics
24	GFS	CCM2 radiation
25	GFS	GFS LBC Phase-uncertainty 1
26	GFS	Symmetric perturb to Member 25
27	GFS	GFS LBC Phase-uncertainty 2
28	GFS	Symmetric perturb. to Member 27
29	GFS	Correlated sounding perturbation
30	GFS	Symmetric perturb. to Member 29

E-RTFDDA Operation for Dugway Proving Ground

E-RTFDDA Spaghetti Meteograms

NCAR

2008 Feb-Mar Mean: 2-m Temperatures

10

2008 Feb-Mar Mean: 10-m Winds

Feb-Mar Mean of DPG E-RTFDDA Dom 2 Outputs

Surface mean wind vector and wind speed STD (m/s), valid at 18Z

Feb-Mar Mean of DPG E-RTFDDA Dom 2 Outputs

Surface temperature and temperature STD (m/s), valid at 18Z

- Cross Appalachian Tracer Experiment of 1983 (CAPTEX-83) Episode 1: 18-19 September 1983.
- Previously studied using MM5 by PSU
- Standard NCAR/NWS ADP radiosondes12 hourly and surface observations (3 hourly).
 - → Set WRF with the same domain configuration ($\Delta x = 36$ km), ICs, BCs, Obs, physics suite and nudging parameters as used in MM5.
 - → Used to systematically test the community WRF obsnudging codes and algorithms

Fit to surface observations

- Valuable exercise to review/validate WRF obs-nudging scheme
- Help enhance the robustness of the WRF obs-nudging scheme for the broad community applications
- A showcase indicating the advantage of community involvement

Specific gains:

1.A utility program to pipe NCAR MSS ADP data to obs-nudging
2.Using sfc observations without sfc pressure
3.A flexibility for using height-based obs directly
4.A need to enhance the ability for enhance
5.Adjust for more intuitive namelist and diagnostic printouts
6.Dealing with more configurable domain options in WRF

NCAR

Summary

Advantages of Obs-nudging

- Assimilate T, U, V and RH of all platforms
- Direct data-model interaction: simple, effective and flexible
- Based on the same foundational formulation as other DA schemes
- Continuous (model-nature) state synchronization

Updates in WRF3.0

- Different obs for nested domains
- Domain-dependent influence radii and time windows
- *"Double-scan" multi-scale
- Code cleaning, bug fixes and
- Others

Obs-nudging Ensemble

- Real-time mesoscale data assimilation and prediction
- Systematic comparisons of MM5 versus WRF
- Impact of physics schemes and other model components
- R&D of 4D-EnkF using nudging and EnKF hybrid

New Updates Coming Soon

- Accommodate the extra flexibility of WRF domains setting over MM5
- Height-based observation and incomplete surface data
- Utility program to ingest NCAR/NWS ADP data
- Adjusting space and time weights

Advanced Obs-nudging formulation

→ Build "proper" mesoscale ensembles - heterogeneous
→ Evaluate EnKF using the "proper" ensemble
→ Incorporate Kalman Gain to obs-nudging weights

Ensemble RTFDDA (NCAR/RAL) (Obs-nudging ensembles)

Improvement areas:
→ Spatial weights
→ Temporal weights
→ Diverse data sources

Hybrids: → 3DVAR → VDRAS → Grid-nudging FDDA

Basic Obs-nudging formulation