Coupled ARW-HYCOM and Applications in Air-Sea Interaction and Hurricane Studies

> Jie Ming¹, Shuyi S. Chen¹, Wei Zhao¹ John Michalakes² ¹RSMAS/University of Miami ²NCAR/MMM

Objectives

To better understand the air-sea interaction and its impact on hurricane structure and intensity change using a coupled atmosphereocean model and observations.

To develop and improve the coupled modeling system for hurricane research and prediction.

Coupled Atmosphere-Wave-Ocean Modeling System for Hurricane Predictions

ARW and HYCOM Configurations

ARW: 35 levels
D1 36km (160x120)
D2 12km (391x271)
D3 4km (361x271)
D4 1.3km (508x604)

•HYCOM: 20 levels•1/24 degree (515x349)

ARW Physics:

Domains	D1	D2	D3	D4
Cu	KF	KF	none	none
MicroPhys	WSM-5	WSM-5	WSM-5	WSM-5
Sfc_layer	SLAB	SLAB	SLAB	SLAB
PBL	YSU	YSU	YSU	YSU

HYCOM Physics: GISS mixed layer physics (Goddard Institute for Space Studies)

Initial conditions

- <u>ARW:</u> initial and lateral boundary condition are from the NCAR's EnKF data assimilation (Dr. Y.-S. Chen) started at 0000 UTC 26 August 2005
- <u>HYCOM</u>: initial and lateral boundary conditions are from the global HYCOM data assimilation system with 7-9 layers in the mixing layer and the 1st layer at 3 m

ARW-HYCOM Coupling

ARW m processors

<u>ARW sends</u> surface winds air T and q precipitation radiative fluxes <u>ARW receives</u>: SST

MCEL (Model Coupling Executable Lib)

HYCOM n processors

<u>HYCOM sends:</u> SST <u>HYCOM receives</u>: surface winds air T and q precipitation radiative fluxes

SST and surface currents from Coupled ARW-HYCOM simulation of Hurricane Katrina

A and B indicate the locations of the Loop Current and Gulf common water where the vertical temperature profiles will be compared.

Ocean vertical temperature profiles in HYCOM

A: Loop Current (deep OML)

B: Gulf Common Water (shallow OML)

Coupled ARW-HYCOM simulated ocean vertical temperature profile along the storm track and max wind speed

Coupled ARW-PWP (1D & 3D) (Poster by Chiaying Lee and Shuyi Chen)

1DPWP

3DPWP

SUMMARY AND FUTURE WORK

- Coupled ARW-Ocean (HYCOM and PWP) modeling system has been tested in Hurricane Katrina and Ophelia simulation
- Preliminary results indicate the ocean impact on storm structure and intensity varies from case to case depending on how well the storm is resolved in ARW (e.g., resolution)
- Increase spatial resolution in the coupled Katrina simulation to better resolve the inner core structure in Katrina (e.g., Davis et al. 2008)
- A fully coupled atmosphere-wave-ocean model will be tested in the near future