Regional Modeling of Particulate Chemistry and its Effect on Cloud-Aerosol Interactions over the Southeastern Pacific Ocean

Jerome Fast, Weiguo Wang, and Elaine Chapman Pacific Northwest National Laboratory, Richland, Washington

9th WRF User's Workshop, June 23-27 2008, Boulder CO

With support from DOE's Atmospheric Sciences Program and assistance from Robert Wood and Matthew Wyant (Univ. of Washington), Roberto Mechoso (UCLA), and Laura Gallardo Klenner (Univ. of Chile)

Motivation

- Coupled atmosphere-ocean general circulation models do not adequately simulate marine stratocumulus clouds
- Affects global climate via teleconnections
- Indirect effect of aerosols on cloudradiative properties not fully understood
- Limited in-situ data in this region

MODIS Cloud Droplet Effective Radius

Inferred Shortwave Cloud Forcing

Pacific Northwest

NATIONAL LABORATORY

The VAMOS Ocean-Cloud-Atmosphere-Land Study

Integrate extensive VOCALS measurements with WRF predictions to examine how particulate properties and aerosol indirect effects evolve in the region

- What are the effects of aerosol chemistry on the evolution of CCN and stratocumulus clouds downwind of large anthropogenic point sources along the coast of Chile?
- What is the relative importance of anthropogenic (copper smelters, power plants) and natural (DMS, volcanic) and sources on cloudaerosol interactions?
- Do aerosols play a role on the evolution of POCs?

Because the field campaign will not be conducted until November 2008, we have run WRF-Chem for October 2006, a climatologically similar period, to "exercise" the code and participate in the **Pre-VOCALS model assessment**

WRF-chem Version 2.2

Model Configuration and Aerosol-Radiation-Cloud Interactions

- YSU boundary-layer scheme and Lin microphysics scheme
- CBM-Z photochemistry and MOSAIC aerosols
- Boundary conditions from GFS and MOZART models
- **Direct effect** (scattering and absorption) via Goddard shortwave radiation scheme
- First & second indirect effects (cloud albedo, cloud life cycle) via predicted CCN and cloud droplet number in modified Lin microphysics scheme

PNNL modules that couple aerosols, radiation, & clouds updated in version 3

Trace Gas and Particulate Emissions

Chilean scientists to develop higher resolution and more up-to-date emission estimates

Chilean National Commission for the Environment 2005 Emission Estimates of SO₂

Simulations

Run	Lin et al. Microphysics	∆x (km)	Cloud-Aerosol
Inter 1a	actions Default	45	no
1b	Default	45 & 15	no
2a	Modified #)	45	yes (prescribed aerosol
2b	Modified #)	45 & 15	yes (prescribed aerosol
3a	Full chemistry, modified	45	yes (complex)
3b	Full chemistry, modified	45 & 15	yes (complex)
'clean' 'clean' 'polluted' 'j			

Pacific Northwest NATIONAL LABORATORY

PreVOCA

Goal: Critically assess the ability of global (7) and regional (6) models to predict conditions over the southeastern Pacific Ocean

Models are currently being evaluated, primarily with satellite data

Pacific Northwest

Analysis from Matthew Wyant and Roberto Mechoso

Regional Cloud Distribution

Simulated Cloud Optical Depth 12 UTC October 15, 2006

GOES Visible 18 UTC

Domain 2 ($\Delta x = 15$ km)

Sulfate and its Precursors

Vertical Cross Section of SO₂ Tracers (ppt)

Pacific Northwest

Elements of Aerosol Radiative Forcing

AOD (600 nm) 12 UTC October 15

CCN at 0.1% SS (# cm⁻³)

particulates affect shortwave radiation via scattering & absorption

CCN activation affects cloud-aerosol interactions

Pacific Northwest NATIONAL LABORATORY

Regional Liquid Water Path

LWP at 12 UTC October 15, 2006

Run 1: Default

TRMM Satellite LWP

Run 2: Prescribed Aerosol #

480

360

240

210 180

150

Run 3: Full Chemistry

- TRMM data aggregated to model domain
- Simulated distribution of LWP qualitatively similar to satellite measurements
- Subtle differences in LWP distribution and magnitude among 3 simulations

Evaluation – Liquid Water Path

Mean & Peak LWP

Frequency of Liquid Water Path

- Cloud-aerosol interactions reduce # of cells with similar LWP, except for very thin clouds
- Simulated mean LWP over domain too low
- Simulated peak LWP over domain better

Regional Cloudiness

MODIS Cloud Fraction

180 160 140 120 100 80 60 40 20

TMI Liquid Water Path

Prescribed Aerosol #

Prescribed Aerosols

Full Chemistry

Full Chemistry

analysis from Matthew Wyant and Roberto Mechoso

Evaluation - Cloudiness

- Simulated diurnal variations similar to observed
- Cloud-aerosol interactions reduce cloudiness
- Influence of cloud-aerosol interactions larger during 2 periods
- Overall, "full-chemistry" and "prescribed aerosol" simulations similar

Summary and Next Steps

- Model performance is mixed, with room for much improvement
 - Is large-scale subsidence, boundary layer mixing, and lowlevel jet simulated adequately?
 - ➤ How important is high-resolution SST?
 - Which WRF microphysics scheme is most appropriate to simulate marine stratus?
 - > Is the current simulated impact of aerosols too large?
- Even though extensive data will be collected during the VOCALS field campaign, evaluating predictions of aerosol chemistry and its effect on cloud-aerosol interactions will be very challenging

