Lawrence Livermore National Laboratory

Toward Regional Fossil Fuel CO₂ Emissions Verification Using WRF-CHEM

Branko Kosović, Luca Delle Monache,

Philip Cameron-Smith, Dan Bergmann, Keith Grant, Tom Guilderson 9th WRF Users Workshop, Boulder, CO, June 26, 2008

> Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

AB32 Calls for a 25% Reduction in GHG Emissions by 2020

- The California Air Resources Board (CARB) has the responsibility for monitoring greenhouse gas emissions on an annual basis and enforcing compliance
- Existing estimation methods are inadequate/insufficient for this task
- Scientifically defensible methods for verification of emissions at regional scales will require significant measurement expertise coupled with the development of inversion models to accurately constrain sources

To address this problem it is essential to couple capability for ¹⁴C analysis by accelerator mass spectrometry with atmospheric modeling

Fossil-fuel Emissions are Responsible for the Net Increase in Atmospheric CO₂

*State of the Carbon Cycle Report, v 2.2 (2007)

Due to uncertainties in fuel consumption and oxidation efficiencies, estimates of carbon emissions have initial uncertainties of at least ± 10%

 Because carbon trades at \$4-30 ton, this uncertainty has significnat economic implications

Lawrence Livermore National Laboratory

¹⁴CO₂ Can Be Used As a Fossil Fuel CO₂ Tracer

- Atmospheric CO₂, Δ¹³C, and Δ¹⁴C as reconstructed in tree-rings and ice cores for the pre-atmospheric weapons testing. The decrease in Δ¹⁴C and Δ¹³C is caused by the burning of fossil fuels.
- Present day atmospheric ¹⁴CO₂ has returned to near "pre-bomb" levels.

Fossil Fuel Emissions are Embedded in the Carbon Cycle

- Fossil fuel CO₂ does not contain ¹⁴C because this isotope has naturally decayed
- Measuring ¹⁴CO₂ to ≤2‰ will allow us to estimate fossil fuel CO₂ to 2ppm out of 380ppm

From: "The First State of the Carbon Cycle Report" 2007.

Black = pre-industrial carbon

Lawrence Livermore National Laboratory

LLNL-PRES-404890

Red = anthropogenic carbon

- First temporal evaluation of fossil fuel emissions (FFE) (¹⁴CO₂) coupled with combustion tracers for a major metropolitan areas (San Diego and Sacramento)
- The goal is to develop and demonstrate a viable fossil fuel CO₂ emissions verification methodology based on integrating measurements and modeling
- Fossil fuel CO₂ emissions verification capability could have applications for carbon management strategies (e.g., carbon offsets)

By Measuring Total CO₂ and ¹⁴C We Can Distinguish Fossil Fuel Emissions from Bio Emissions

 Measured CO₂ (in situ shown in gray), D¹⁴C and calculated FF-CO₂, and Bio-CO₂ for profiles sampled in the morning in an urban area (top) and a rural area (bottom) in Colorado

- Urban CO₂ is dominated by FF
- Rural CO₂ is dominated by biogenic sources

Graven et al., submitted to Geophys. Res. Letts. Lawrence Livermore National Laboratory

Predictive Models and Data are Coupled With Bayesian Inference and Stochastic Sampling

Predictive Models and Data are Coupled With Bayesian Inference

California Air Basins and Distributed Emission Sources

Lawrence Livermore National Laboratory

California Air Basins and Distributed Emission Sources

Lawrence Livermore National Laboratory

San Francisco and LA Air Basin Emissions

Lawrence Livermore National Laboratory

Area source "San Francisco Bay" - Posterior Distribution and Sensitivity Analysis of Reconstruction Accuracy and Uncertainty

Uncertainty vs Accuracy

Posterior Distribution

Lawrence Livermore National Laboratory

Area Source "Northeast Plateau" -- Posterior Distribution and Sensitivity Analysis of Reconstruction Accuracy and Uncertainty

Uncertainty vs Accuracy

Posterior Distribution

Summary and Future Work

- Verification of fossil fuel CO₂ emissions will be an essential component of any greenhouse gas control policy
- We demonstrated use of WRF-CHEM in a framework with Bayesian inference with stochastic sampling and observations of ¹⁴C to quantify fossil fuel CO₂ emissions in California
- Future work will include:
 - Quantify model error by carrying out ensemble simulations
 - Examine diurnal and seasonal variations in emissions
 - Include inventories of fossil fuel CO₂ emissions in California when they become available
- This general methodology can be applied to other greenhouse gases

Combined Relative Error (Sigma) - Posterior Distribution and Sensitivity Analysis of Reconstruction Accuracy and Uncertainty

Uncertainty vs Accuracy

Posterior Distribution

Lawrence Livermore National Laboratory

Area source "South Coast (LA)" - Posterior Distribution and Sensitivity Analysis of Reconstruction Accuracy and Uncertainty

Uncertainty vs Accuracy

Posterior Distribution

