

Numerical Prediction of Mesogamma-Scale Wind Meandering in the Nocturnal Stable Boundary Layer

KED

Nelson Seaman¹, Brian Gaudet¹, John Wyngaard¹, Larry Mahrt², Scott Richardson¹ and David Stauffer¹

Penn State University¹ & Oregon State University²

Sponsor: Defense Threat Reduction Agency

Objectives and Methodology

- Background: Most NWP models poorly predict conditions in the stable boundary layer (SBL)
- Objectives:
 - **Understand physical processes** controlling SBL growth and structure in complex environments.
 - Identify model resolution and physical requirements to predict wind fluctuations responsible for stable plume meandering.
 - Validate and/or improve WRF parameterizations for sub-kilometer predictions of SBL.

Methodology:

- Conduct "scoping" field study to obtain data on SBL evolution.
- Evaluate sub-kilometer WRF-ARW predictions of SBL.
- As necessary, modify SBL parameterizations.

PENNSTATE

WRF-ARW Horizontal Grid

- WFR-ARW configured with 4 nested domains.

Domain No.	Horiz. Res. (km)	No. of Points
1	12.0	421 X 271
2	4.0	193 X 169
3	1.333	121 X 121
4	0.444	151 X 151

ARW output saved at local field network sites at 10-sec frequency, averaged to 1 min.

- All inner grids use one-way nested grid interfaces.
- 12-h nocturnal forecasts take ~6 h on sixteen 3.0 GHz CPUs.

444-m Innermost ARW Domain (DTED-1 Terrain Database, ~90 m Resolution)

PENNSTATE

1 8 5 5

Field Site (ellipse):

Extensive PSU-owned agricultural land at Rock Spring, PA

- Sub-kilometer resolution is necessary to resolve fine-scale terrain important for shallow SBL flows.
- Small box shows sub-domain for detailed diagnosis.
- Gold line indicates location of cross section.

- WRF-ARW is configured with 43 layers; Model top is at 50 hPa.
- Lowest five layers are 2 m thick, gradually increasing upwards.
- 10 layers below 50 m AGL.

PENNSTATE

Preliminary Modeling Results

-0.01

0.002 = 0.02

0.0

-0.008 -0.006 -0.004 -0.002

0

-0.01

0.01

Internal Gravity-Waves

PENNSTATE

Wind, Geopotential Height and Relative Humidity (color fill) at 850 mb, 0900 UTC, 18 Aug. 2007

Vertical Cross Section in Nittany Valley Showing Internal Gravity Waves

1855

PENNSTATE

18 August 2007 Case, 0900 UTC

Synoptic wind direction: Northwesterly above 900 mb.

ARW fcst. sounding, Rock Spring, PA 0900 UTC, 18 August 2007

Residual elevated mixed layer aloft, above shallow SBL inversion

Dataset: OctO4 RIP: rip gwave

Internal Gravity Waves in Nittany Valley Cross Section

UNCLASSIFIED

PENNSTATE

Init: 0000 UTC Thu 04 Oct 07

Objective Verifications

MET software provided by DTC

PENNSTATE 8 5 5

180

Station 1

10 m AGL

• Towers 1 and 3 are located ~0.75 km from the base of Tussey Ridge.

Station 3

3 m AGL

2000 150d

0.6

Idealized Streamlines in Nittany Valley 0.444-km sub-domain

- Site 2 \mathbf{O}
- Site 3 \circ
- Axis of low ridges in Nittany Valley.

Ν

Approximate convergence zone between Tussey Mt. drainage wind and channeled Nittany Valley wind.

7 Oct. 2007 Case One-Minute Time Series

Evaluation Method: (Gaudet 2008, P8.2)

Decompose time series into components:

- low frequencies → Deterministic
- high frequencies → Non-deterministic

WRF-ARW winds in SBL exhibit...

- Speed shear in 1-10 m layer.
- Intermittent bursts of higher speeds with periodicity similar to obs'd. (~0.3-2.0 h).
- Direction fluctuations with periodicity similar to obs'd. (~0.5-2.0 h)
- Mean direction bias of ~ +40 deg. (westerly), possibly due to failure of 444-m grid to fully resolve local hills in Nittany Valley (see slide 16).

Gaudet et al. (2008), poster P8.1

• Expand field network.

- Completed 2nd phase, May 2008.
- Future: Add remote sensing instruments.

• Continue analysis of local observations.

- Study interactions of downslope flows, valley channeling, etc.

• Study processes affecting stable meandering.

- Internal gravity waves
- LLJ shear, intermittent turbulence bursts
- Extend modeling to include QNSE SBL.

- Sub-kilometer ARW with MYJ scheme simulates qualitative vertical structure of the SBL.
 - Negative buoyancy flux profile (shallow layer).
 - Intermittent turbulence from LLJ to surface (deep layer).
- Predicted wind speed errors reveal model has skill in SBL.
 - Low-frequency components have small RMSE and some pos. bias.
 - High-frequency KE spectrum simulated well for 20-120 min. range.
- Sub-mesoscale wind fluctuations appear forced by cold-air drainage, internal gravity waves, and turbulence in LLJ.
- High-resolution models may be able to predict some important characteristics of stable meandering critical for better forecasting of plume behavior in SBL.

Questions?

Backups

PENNSTATE Strategy for WRF Vertical Grid Configuration

- Ultra-high resolution WRF grid...
 - **scales comparably** to resolutions commonly used for convective PBLs:

Convective PBL depth, Z_i: Z_i ~ 1250 m Grid Resolution: $Dx = 12 \text{ km} \rightarrow -10 \text{ x } Z_i$ $Dz = 50-200 \text{ m} \rightarrow -0.04-0.16 \text{ x } Z_{i}$ Stable PBL depth, h: h ~ 40 m $Dx = 444 \text{ m} \rightarrow -10 \text{ x h}$ Grid Resolution: $Dz = 2-14 \text{ m} \rightarrow \sim 0.05-0.35 \text{ x h}$

- allows application of existing "ensemble-type" mesoscale PBL schemes to predict shallow SBLs.
 - Mellor-Yamada-Janjic turbulence scheme is used in this study.
 - Grid does NOT scale well for convective boundary layers.
- is applied for running daily 12-h forecasts.
 - Model begins at 0000 UTC; runs for nocturnal period only, with Dt = 2 s. •
 - Runs in ~9 h on four nodes of a Linux cluster at PSU (4 CPUs per node).

Verification of WRF-Predicted Temps. vs. Obs. at Rock Spring, PA

7 October 2007

Initial condition has cold bias:

WFR initial conditions (Sept-Oct) had a strong cold bias apparently caused by an interpolation error in GFS analyses at 00 UTC. WRF requires several hours to recover. Error was corrected by NCEP in mid-October 2007.

Day of Year

PENNSTATE

8 5 5