Model Evaluation Tools (MET)

NOAR

Copyright 2008, University Corporation for Atmospheric Research, all rights reserved

MET Development Team

- Dave Ahijevych (scientist)
- Barbara Brown (scientist/statistician)
- Randy Bullock (software engineer)
- Eric Gilleland (scientist/statistician)
- John Halley Gotway (software engineer)

With thanks to the Air Force Weather Agency (AFWA) and NOAA for their support Also thanks to Lacey Holland who helped lead much of the MET implementation so far

Outline

- MET Overview Barb
- Technical details John
- Point-stat and grid-stat science Barb
- Confidence intervals Eric
- Point- and grid-stat practical John
- MODE science Randy
- MODE Tool Practical John
- VSDB and MODE analysis tools Dave
- Future Plans Barb

MET: A community tool

- Goal: to provide a set of forecast verification tools that are
 - Openly available to the community
 - "Created" by the community, through contributed methods and capabilities
 - Evaluation methods
 - Graphical methods
- Community includes diverse users
 - WRF Developers
 - Development Testbed Center (DTC)
 - University researchers
 - Operational centers

MET status

- MET implementation initiated in fall 2006
- Version 1.0 released in January 2008
- Version 1.1 to be released in July 2008
 - ASCII observations
 - Neighborhood methods
 - New confidence interval estimates for non-Gaussian measures
- Version 2.0 in early 2009

http://www.dtcenter.org/met/users/

MET is

- A modular set of verification tools that can be freely downloaded
- Fully documented
- Supported through an email help address

Postal Address: P.O. Box 3000, Boulder, CO 80307-3000 • Shipping Address: 1850 Table Mesa Drive, Boulder, CO 80305 • Contact

Main MET components

- Data reformatting modules
 - Move data into the format(s) expected by MODE (ascii2nc; pb2nc)
 - Combine precipitation values across time periods (e.g., 24-h totals) (pcp_combine)
 - Subtract precipitation values to create values for finer subperiods (pcp_combine)
- Statistics modules
 - Object-based spatial verification method (MODE)
 - Verification of grids (Grid-stat)
 - Verification at points (Point-stat)
- Analysis modules
 - Aggregate results across cases; stratify results by categories
 - VSDB analysis tool (for Grid-stat and Point-stat)
 - MODE analysis tool

Technical Information

- MET distributed as a tarball to be downloaded and compiled locally.
 - METv1.1 to be released in July, 2008.
 - Updated User's Guide and Online Tutorial.
 - Register and download: www.dtcenter.org/met/users
- Language:
 - Written primarily in C++ with calls to a Fortran library
- Supported Platforms and Compilers:
 - Linux machines with GNU compilers
 - g++ and gfortran or g77
 - Linux machines with Portland Group (PGI) compilers
 - pgCC and pgf77
 - IBM machines with IBM compilers
 - xIC and xlf

Dependencies

- Required to compile:
 - GNU Make Utility
 - C++ and Fortran compilers (GNU, PGI, or IBM)
 - NetCDF Library
 - BUFRLIB Library
 - GNU Scientific Library (GSL)
 - F2C Library (f2c or g2c)
- Recommended for use:
 - WRF Post-Processor
 - COPYGB (included with WRF-Post)
 - CWORDSH

Building MET

- Steps for building MET:
 - 1. Build the required libraries with the same family of compilers to be used with MET.
 - 2. Select the appropriate Makefile.
 - GNU, PGI, or IBM
 - 3. Configure the Makefile.
 - C++ and Fortran compilers
 - Paths for NetCDF, BUFRLIB, GSL, and F2C libraries
 - 4. Execute the GNU Make utility.
 - 5. Run the test script and check for runtime errors.
 - Runs each of the MET tools at least once.
 - Uses sample data distributed with the tarball.

METv1.1 Flowchart

INPUT → RFMT → INTERMED → STATS → OUTPUT → AGGREGATE

Configuration Files

- MET is a set of command line tools which are controlled using ASCII configuration files passed to the tools on the command line.
- Configuration files control things such as:
 - Fields/levels to be verified.
 - Thresholds to be applied.
 - Interpolation methods to be used.
 - Verification methods to be applied.
 - Regions over which to accumulate statistics.
- Well commented and documented in User's Guide.
- Easy to modify.
- Use the version of the configuration files distributed with the tarball.

Use of Configuration Files

Sample File

- PB2NC (18)
- MODE (65)
- Grid-Stat (21)
- Point-Stat (20)
- VSDB-Analysis (23)
- MODE-Analysis (89)
- Only need to modify a few!

```
- 🗆 X
  GridStatConfig_default - KWrite
<u>File Edit View Bookmarks Tools Settings Help</u>
                                                                       14
   📔 🗄 🚔 😣 🕹 🖘 🕹 🖺 😭 🕵 옷
      2//
3// Default grid_stat configuration file
 4/1
 б
 7
 8 // Specify a name to designate the model being verified. This name will be
 9 // written to the second column of the ASCII output generated.
10 //
11 model = "WRF":
12
13 //
14
   // Specify a comma-separated list of fields to be verified. Each field is
15 // specified as a grib code or corresponding grib code abbreviation followed
16 // by an accumulation or vertical level indicator.
17 //
18 // Each verification field is specified as one of the following:
19/1
         GC/ANNN for accumulation interval NNN
20 //
        GC/ZNNN for vertical level NNN
21 //
         GC/PNNN for pressure level NNN in hPa
22 11
         GC/PNNN-NNN for a range of pressure levels in hPa
23 11
         Where GC is the number of or abbreviation for the grib code
24// to be verified.
25// http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html
26//1
27//e.g. vx_grib_code[] = [ "61/A3", "APCP/A24", "RH/L10" ];
28 //
29 vx_grib_code[] = [ "61/A3" ];
30
31 //
32 ^{\prime\prime} Specify a comma-separated list of groups of thresholds to be applied to the
33 // verification fields listed above. At least one threshold must be provided
34 // for each verification field listed above. The lengths of the "vx_grib_code"
35 // array and the "thresholds" array must be the same. To apply multiple
36 // thresholds to a verification field, separate the threshold values with a
37 // space.
38 //
39 // Each threshold must be preceded by a two letter indicator for the type of
40 // thresholding to be performed:
         'lt' for less than
'eq' for equal to
                               'le' for less than or equal to
'ne' for not equal to
41 //
42 11
43 //
         'gt' for greater than 'ge' for greater than or equal to
44 //
45 // e.g. thresholds[] = [ "gt0.0 ge5.0", "gt0.0", "lt80.0 ge80.0" ];
46 //
47 thresholds[] = [ "gt0.0 ge5.0" ];
48
49 /
50
   // Specify a comma-separated list of grids to be used in masking the data over
51
   // which to perform scoring. An empty list indicates that no masking grid
52 // should be performed. The standard NCEP grids are named "GNNN" where NNN
53 // indicates the three digit grid number.
54 // http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
55 //
56 // e.g. mask_grids[] = [ "G212" ];
57 11
58 mask_grids[] = [ "G212" ];
59
60 //
61 // Specify a comma-separated list of ASCII files containing lat/lon polygons to
62 // be used in masking the data over which to perform scoring. An empty list
63 // indicates that no polygon mask should be used.
64 11
                                                                                  4 1
```

Data Reformatting Tools

PCP-Combine Tool

- Functionality:
 - Sum precipitation across multiple files.
 - New for v1.1:
 - Add precipitation in 2 files (i.e. NMM output).
 - Subtract precipitation in 2 files (i.e. ARW output).
 - Specify field name on the command line.
 - No configuration file.
- Data formats:
 - Reads GRIB.
 - Writes gridded NetCDF as input to stats tools.

PB2NC Tool

- Functionality:
 - Filter and reformat PREPBUFR point observations into intermediate NetCDF format.
 - Configuration file specifies:
 - Observation types, variables, locations, elevations, quality marks, and times to retain or derive for use in Point-Stat.
- Data formats:
 - Reads PREPBUFR using NCEP's BUFRLIB.
 - Writes point NetCDF as input to Point-Stat.
- CWORDSH utility for FORTRAN blocking

ASCII2NC Tool (new in v1.1)

• Functionality:

- Reformat ASCII point observations into intermediate NetCDF format.
- For v1.1, one input ASCII format supported (10 columns):
 - Message_Type, Station_ID, Valid_Time
 - Lat(Deg North), Lon(Deg East), Elevation(msl)
 - Grib_Code, Level, Height(msl), Observation_Value
- No configuration file.
- Data formats:
 - Reads ASCII.
 - Writes point NetCDF as input to Point-Stat.
 - Support additional ASCII formats based on user input.

Grid-stat and Point-stat science

Stats tools

- <u>MODE</u>: Method for Object-based Diagnostic Evaluation
- <u>Grid-Stat</u>: Compares gridded forecasts and observations
 - Includes "neighborhood methods"
- <u>Point-Stat</u>: Compares gridded forecasts and point observations (e.g., rawinsonde output)
 - Includes several methods for matching forecasts to point obs

<u>Statistics</u> <u>Grid-Stat and</u> <u>Point-Stat</u>: • Traditional statistics • Contingency table statistics

- (POD, FAR, etc.)
- Continuous statistics (RMSE, MAE, Bias, etc.)
- Confidence intervals
 - Parametric
 - Bootstrap

Point Stat: Grid-to-Point Verification²⁰

- Input Grib forecasts and NetCDF observations from PB2NC
- Select multiple...
 - Variables, levels, thresholds, masking regions, matching methods, confidence interval (CI) method and alpha values for CIs

- Output VSDB and ASCII
 - Contingency table counts and statistics with CIs
 - Continuous statistics with CIs
 - Partial sums

Point-stat: Matching approaches

- User-specified region of gridpoints around the observation point:
 - 1 nearest point
 - 2 2x2 box around point
 - 3 3x3 box around point
 - Etc.
- Several metrics can be used to create matched forecast value
 - Min, Max, Median, Unweighted mean, Distance-weighted mean, Least-squares fit
- User-defined min number of valid data points

Grid Stat: Grid-to-Grid verification²²

- Input Grib or NetCDF from PCP Combine
- Select multiple...
 - Variables, levels, thresholds, masking regions, smoothing methods, confidence interval (CI) methods and alpha values for CIs
- Output VSDB and ASCII
 - Contingency table counts and statistics with confidence intervals
 - Continuous statistics with CIs
 - Partial sums (L1L2, etc.)
 - Neighborhood methods
- Output NetCDF
 - Matched pairs and difference fields for each variable, level, masking region

Statistics for discrete variables²³

Measures for 2x2 contingency tables

- *Ex*: based on applying a threshold to a continuous variable
- Number of observations
- FHO statistics
- Contingency table counts
- Contingency table proportions
- Accuracy
- Bias

- Probability of Detection of Yes (PODy)
- Probability of Detection of No (PODn)
- False Alarm Ratio (FAR)
- Critical Success Index (CSI)
- Gilbert Skill Score (GSS = ETS)
- Hanssen and Kuipers
 Discriminant (H-K = TSS)
- Heidke Skill Score (HSS)
- Odds Ratio (OR)

Statistics for continuous variables

- Forecast/observation mean
- Forecast/observation standard deviation
- Correlation coefficients (Pearson, Spearman, Kendall's tau)
- Mean error (ME)
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Bias-corrected Mean Squared Error (BCMSE); also known as "standard deviation of the error" (ESTDV)

 Root-Mean Squared Error (RMSE)

24

- Error percentiles (10th, 25th, 50th, 75th, 90th)
- Partial sums (1st and 2nd moments of the forecasts, observations, and errors)
 - Scalar
 - Anomaly
 - Vector
 - Vector anomaly

Neighborhood verification methods²⁵

- Also called "fuzzy" verification
- Upscaling
 - Put observations and/or forecast on coarser grid
 - Calculate traditional metrics
- Provide information about scales where the forecasts have skill

Neighborhood verification methods²⁶

- Also called "fuzzy" verification
- Upscaling
 - Put observations and/or forecast on coarser grid
 - Calculate traditional metrics
- Provide information about scales where the forecasts have skill

Example: Fractional skill score (Roberts and Lean, MWR, 2008)

From Mittermaier 2008

Ebert (2008; Met Applications) describes the neighborhood methods in MET

Copyright 2008, University Corporation for Atmospheric Research, all rights reserved

Motivation/Background	Normal 00000	Bootstrap	Future 00
		28	
Confidence Intervals and MET			
	Eric Gillelan	.d	
A COMPANY	27 June 200	8	
		AL	

E Gilleland Confidence Intervals

1 / 13

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

©University Corporation for Atmospheric Research. All rights reserved.

 Motivation/Background
 Normal occord
 Bootstrap
 Future oc

 Motivation: Why use confidence intervals?
 29

$$\hat{\theta} \pm z_{\alpha/2} \cdot \operatorname{se}(\theta)$$

- Point estimate for (frequency) bias is 1.2
 - Is this significantly different from 1 (unbiased)?
 - A point estimate is a realization of a random variable.
- How much uncertainty is in the estimate?

©University Corporation for Atmospheric Research. All rights reserved.

E Gilleland Confidence Intervals

3 / 13

© University Corporation for Atmospheric Research. All rights reserved.

- A level α hypothesis test is related to a $(1 \alpha) \cdot 100\%$ confidence interval.
- Interpretation is that if the experiment were run 100 times (i.e., 100 CIs estimated), then the true parameter would fall within exactly $(1 \alpha) \cdot 100$ of those limits.
- For example, if $\alpha = 0.05$, then we expect the true parameter would fall inside the limits 95 times.

イロト イヨト イヨト イヨト 三日

©University Corporation for Atmospheric Research. All rights reserved.

If the sample $\mathcal{X}_n = \{x_1, \ldots, x_n\}$ is independent and identically distributed (iid), then for large n, the distribution of \mathcal{X}_n can often be approximated by a normal distribution. Then, for a given parameter, θ (e.g., mean, hit rate, odds ratio, etc.), a $(1 - \alpha) \cdot 100\%$ interval for the estimate, $\hat{\theta}$ is given by

$$\hat{\theta} \pm z_{\alpha/2} \cdot \operatorname{se}(\theta),$$

where $z_{\alpha} = \phi^{-1}(\alpha)$, ϕ the standard normal distribution, and typically $se(\theta)$ is replaced by an estimate, $\hat{se}(\theta)$.

©University Corporation for Atmospheric Research. All rights reserved.

Must be able to find an estimate for $se(\theta)$.

For example, if $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, then for $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, we have that $\widehat{\operatorname{se}}(\bar{X}) = \sigma/\sqrt{n}$, and $(1 - \alpha) \cdot 100\%$ CIs are given by

$$\bar{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

and, of course, we replace σ (the standard deviation of X_1, \ldots, X_n)

with its estimate $\hat{\sigma} = \sqrt{\sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{n-1}}.$

E Gilleland Confidence Intervals

© University Corporation for Atmospheric Research. All rights reserved.

6 / 13

イロン イロン イヨン イヨン 三日

When n is small (e.g., < 30), for the mean, it may be possible to use the t-distribution instead of the normal.

$$\bar{X} \pm t_{\alpha/2,n-1} \cdot \frac{\hat{\sigma}}{\sqrt{n}},$$

where $t_{\alpha,\nu}$ is the α quantile from a t-distribution with ν degrees of freedom.

E Gilleland Confidence Intervals

7 / 13

©University Corporation for Atmospheric Research. All rights reserved.

It is possible to estimate the standard error for most proportions (e.g., hit (false alarm) rate, POD, etc.

- A random sample of n items are observed, and X is the number of events (e.g., precipitation over a given threshold) in the sample.
- For n large, X has approximately a normal distribution.
- The sample proportion $\hat{p} = \frac{X}{n}$ subsequently also has approximately a normal distribution.
- The most straightforward interval is given by $\hat{p} \pm z_{\alpha/2} \cdot \sqrt{\hat{p}(1-\hat{p})/n}$ (Wald).
- For *n* small (and large), there is a better, slightly more complicated, interval (Wilson), which is used in MET.

E Gilleland Confidence Intervals

© University Corporation for Atmospheric Research. All rights reserved.

イロト イヨト イヨト イヨト 三日

Directly or indirectly

- Mean Error (ME)
- Mean Squared Error (MSE), Mean Absolute Error (MAE)
- Variance and standard deviation
- (Linear) Correlation
- (Rank) correlations
- Hit Rate, False Alarm Rate (proportions)
- Pierce Skill Score (PSS)
- Odds Ratio (OR)

- Assume the sample is representative of the population
- Resample with replacement from the sample B times
- Estimate the parameter of interest for each resample in order to obtain a sample of the statistic of interest.
- Calculate confidence intervals using the distribution of parameters
 - Percentile method is simplest
 - BC_a (adjusted percentile) has better accuracy, but computationally inefficient

ъ

 $\frac{10}{13}$ /

Some statistics cannot use the normal approximation, and often it is not known how to construct CIs without relying on resampling methods.

- Bias (\bar{f}/\bar{o})
- Equitable Threat Score (ETS)
- For high percentiles, re-sample m < n (e.g., $m = \lfloor \sqrt{n} \rfloor)$
- Others?

Some statistics (e.g., the mean) that can use the normal approximation will still have more accurate CIs via the bootstrap procedure.

 $\frac{11}{13}$ /

E Gilleland Confidence Intervals

C University Corporation for Atmospheric Research. All rights reserved.

Empirical quantiles (ordinate) vs. Theoretical quantiles (abscissa)

E Gilleland Confidence Intervals

©University Corporation for Atmospheric Research. All rights reserved.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\frac{12}{13}$ /

- Normal approximation bootstrap intervals assume iid samples
- Wildly incorrect intervals possible if these assumptions are not met
- Check plots!
- If the dependence can be modeled, best to model it and use normal approximation on errors or parametric bootstrap
- Inflate variance?
- Block bootstrap to be added soon
- Currently, uncertainty is only in the sample uncertainty
 - Observational uncertainty? (difficult, but maybe could be added)

 $^{13}_{13}$ /

• Other sources of uncertainty?

E Gilleland Confidence Intervals

Practical: Grid-Stat Tool

• Functionality:

- Computes a variety of statistics for comparing a gridded forecast to a gridded observation.
- One time step at a time.
- Data must reside on a common grid.
 - Recommend COPYGB for regridding GRIB data.
- Configuration file specifies:
 - Fields/levels, thresholds, vx regions (grids or polylines)
 - Smoothing options, neighborhood sizes
 - Vx methods, confidence interval options, output types
- Data formats:
 - Reads gridded GRIB and NetCDF output of PCP-Combine.
 - Writes ASCII statistics and NetCDF matched pairs.

Practical: Grid-Stat Usage

• Command Line:

- Required: fcst_file, obs_file, config_file
- Optional: -outdir, -v

Session Edit View Bookmarks Settings Help	
[johnhg@billiken]% ./grid_stat	-
Usage: grid_stat fcst_file obs_file config_file [-outdIr path] [-v level]	
<pre>where "fcst_file" is a forecast file in either Grib or netCDF format (output of pcp_combine) containing the field(s) to be verified (require "obs_file" is an observation file in either Grib or netCDF format (output of pcp_combine) containing the verifying field(s) (required) "config_file" is a GridStatConfig file containing the desired configuration settings (required). "-outdir path" overrides the default output directory (/dl/johnhg/MET/MET_releases/METv1.lbeta6/out/grid_stat) (optional). "-v level" overrides the default level of logging (1) (optional).</pre>	d).
NOTE: The forecast and observation fields must be on the same grid.	
[johnhg@billiken]%	-
🛃 🖷 Shell	1

Practical: Grid-Stat Line Types

- Statistics line types: 11 possible
 - Categorical apply threshold
 - Contingency table counts (FHO, CTC, CTP, CFP, COP)
 - Contingency table statistics (CTS)
 - Continuous raw fields
 - Continuous statistics (CNT)
 - Partial Sums (SL1L2)
 - Neighborhood choose size (new for v1.1)
 - Neighborhood categorical (NBRCTC, NBRCTS)
 - Neighborhood continuous (NBRCNT)
- Ten header columns common to all line types.
- Data in remaining columns specific to each line type.

Practical: Grid-Stat Output

• Output files:

- ASCII statistics file containing all line types (File ends with ".vsdb").
- Optional ASCII files sorted by line type with a header row (File ends with "_TYPE.txt").
- Optional NetCDF matched pairs and difference fields. (File ends with "_pairs.nc").

• Naming conventions:

- grid_stat_HHMMSSL_YYYYMMDD_HHMMSSV
 [.vsdb | _pairs.nc | _TYPE.txt]
- Ex: grid_stat_120000L_20050807_120000V.vsdb

Practical: Point-Stat Tool

• Functionality:

- Computes a variety of statistics for comparing a gridded forecast to point observations.
- One time step at a time.
- Configuration file specifies:
 - Fields/levels, thresholds, vx regions (grids, polys, stations)
 - Vx message types, interpolation methods
 - Vx methods, confidence interval options, output types
- Data formats:
 - Reads gridded GRIB and NetCDF output of PCP-Combine.
 - Reads point NetCDF output of ASCII2NC and PB2NC.
 - Writes ASCII statistics.

Practical: Point-Stat Usage

- Command Line:
 - Required: fcst_file, obs_file, config_file
 - Optional: -climo, -ncfile, -outdir, -v

🖷 Shell - Konsole		• ×
Session Edit View E	Bookmarks Settings Help	
[johnhg@billike	en]% ./point_stat	-
Usage: point_st fcst_ff obs_fil config [-clime [-ncfil [-outdi [-v lev	tat ile file c climo_file] le netcdf_file] ir path] rel]	
where	"fcst file" is a forecast file in either Grib or netCDF format (output of pcp_combine) containing the field(s) to be verified (required). "obs file" is an observation file in netCDF format (output of PB2NC or ASCI12NC) containing the verifying observation data points (required "config_file" is a PointStatConfig file containing the desired configuration settings (required). "climo file" is a climatological file in either Grib or netCDF format (output of pcp_combine) on the same grid as the forecast file to be used when computing scalar and vector anomaly measures. If not provided, scalar and vector anomaly values will not be computed (optional). "-ncfile netcdf_file" may be used to specify additional NetCDF point observation files to be used (optional). "-outir path" overrides the default output directory (/dl/johng/MET/MET_releases/METvl.lbeta6/out/point_stat) (optional). "-v level" overrides the default level of logging (1) (optional).) .
[johnhg@billike	en]%	+
🛃 🖷 Shell		1

Practical: Point-Stat Line Types⁴⁷

- Statistics line types: 12 possible
 - Categorical apply threshold
 - Contingency table counts (FHO, CTC, CTP, CFP, COP)
 - Contingency table statistics (CTS)
 - Continuous raw fields
 - Continuous statistics (CNT)
 - Partial Sums (SL1L2, SAL1L2, VL1L2, VAL1L2)
 - Matched Pairs (new for v1.1)
 - Raw matched pairs a lot of data! (MPR)
- Ten header columns common to all line types.
- Data in remaining columns specific to each line type.

Practical: Point-Stat Output

- Output files:
 - ASCII statistics file containing all line types (File ends with ".vsdb").
 - Optional ASCII files sorted by line type with a header row (File ends with "_TYPE.txt").
- Naming conventions:
 - point_stat_HHMMSSL_YYYYMMDD_HHMMSSV
 [.vsdb | _TYPE.txt]
 - Ex: point_stat_120000L_20050807_120000V.vsdb

Method for Object=Based

Diagnostic Evaluation

Step # 1: Raw Data

In this case, Precipitation Data over the Continental United States

Step # 2: Convolution

This is Essentially a Smoothing Operation

Step # 3: Thresholding

1111 11 11

This Produces an On / Off Mask Field

Step # 4: Restoration

Original (Raw) Data is Restored to Object Interiors

Object Attributes

Simple or Composite

- Area
- Centroid
- Axis Angle
- Angle Confidence
- Median Intensity

- Intersection
- Union
- Centroid Distance

Pair

- Angle Difference
- Area Ratio
- Intensity Ratio

Alternative Merging Method

Double Thresholding

Space ... the Final Frontier

Practical: MODE Tool

- Functionality:
 - Identifies objects in two fields, computes single object attributes and pairwise differences, matches/merges objects, writes object attributes and differences.
 - One time step at a time.
 - Data must reside on a common grid.
 - Recommend COPYGB for regridding GRIB data.
 - Configuration file specifies:
 - Forecast and observation specified separately
 - Field/level, raw filter value, mask region (grid, polyline)
 - Object definition parameters (convolution radius and threshold)
 - Object filtering parameters (area, intensity)
 - Flags for matching/merging logic
 - Fuzzy engine weights, interest functions, and confidence maps
 - Total interest threshold
 - PostScript plotting options
- Data formats
 - Reads gridded GRIB and NetCDF output of PCP-Combine.
 - Writes ASCII statistics, NetCDF object fields, PostScript summary plot.

Practical: MODE Usage

- Command Line
 - Required: fcst_file, obs_file, config_file
 - Optional: -config_merge, -outdir, -v
 - Disable output: -plot, -obj_plot, -obj_stat, ct_stat

Shell - Konsole <2>	×
ession Edit View Bookmarks Settings Help	
johnhg@billiken]% ./mode	-
<pre>sage: mode fcst_file obs_file config_file [-onfig_merge_merge_config_file] [-ontig_merge_merge_config_file] [-outdir_path] [-obj_plot] [-obj_stat] [-ot_stat] [-ot_stat] [-v_level] where "fcst_file" is an observation file in either Grib or netCDF format (output of pcp_combine) containing the field to be verified (required) "obs_file" is an observation file in either Grib or netCDF format (output of pcp_combine) containing the verifying field (required) "config_file" is an observation file in either Grib or netCDF format (output of pcp_combine) containing the verifying field (required). "config_file" is a WrfModeConfig_file containing the desired configuration settings (required). "config_merge_merge_config_file" overrides the default fuzzy engine settings for merging within the fcst/obs fields (optional). "-outdir path" overrides the default output directory (/d1/johng/MET/MET_releases/METV1.lbeta6/out/mode) (optional). "-obj_plot" disables the output of the object split and composite fields to a NetCDF file (optional). "-obj_stat" disables the output of the object statistics file (optional). "-ot_stat" disables the output of the contingency table standard statistics file (optional). "-v_level" overrides the default level of logging (l) (optional).</pre>	
NOTE: The forecast and observation fields must be on the same grid.	
johnhg@billiken]%	4

Practical: MODE Output

- Output files:
 - ASCII object statistics file (File ends with "_obj.txt").
 - ASCII Contingency table statistics file (File ends with "_cts.txt").
 - NetCDF object file (File ends with "_obj.nc").
 - PostScript summary plot (File ends with ".ps").
- Naming conventions:
 - mode_FFIELD_FLVL_vs_OFIELD_OLVL_ HHMMSSL_YYYYMMDD_HHMMSSV_HHMMSSA
 [.obj.txt | _cts.txt | _obj.nc | .ps]
 - Ex:

mode_APCP_12_SFC_vs_APCP_12_SFC_120000L_20050 807_120000V_120000A_obj.txt

Practical: MODE Object Stats

- Four object statistics line types (contents of OBJECT_ID column):
 - Simple forecast and observation objects (FNNN and ONNN)
 - Pairs of simple objects (FNNN_ONNN)
 - Composite forecast and observation objects (CFNNN and CONNN)
 - Pairs of composite object (CFNNN_CONNN)
- Same number of columns for each line type (50 in total):
 - 18 header columns.
 - 20 columns applicable to SINGLE simple and composite line types.
 - 12 columns applicable to PAIRS of simple or composite line types.
 - Columns which do not apply to a given line type contain fill data (-9999)
- May be disabled using the <u>-obj_stat</u> command line argument.

Practical: MODE CTStats

- Contains traditional contingency table counts and corresponding statistics computed in three ways:
 - Scoring the RAW fields by applying the convolution thresholds.
 - Scoring the FILTERed fields by first applying any raw filters and then applying the convolution thresholds.
 - Scoring point-wise using the resolved **OBJECT** fields.
- Meant simply as a point of reference for the MODE method.
- Differs from the VSDB CTS line type.
 - Does not include confidence intervals.
- May be disabled using the -ct_stat command line argument.

Practical: MODE NetCDF

• NetCDF output file contains 4 fields:

- Indices for the simple forecast objects.
- Indices for the simple observation objects.
- Indices for the composite forecast objects.
- Indices for the composite observation objects.
- May be disabled using the <u>-obj_plot</u> command line argument.

Practical: MODE PostScript

- MET does not generally provide plotting tools.
- Exception for MODE to illustrate the method.
- Configuration file plotting options:
 - Specify colortables to be used for plotting raw and object fields.
 - 61 colortables provided in data/colortables.
 - Specify how to rescale an existing colortable.
 - Or explicitly define you own.
 - Option for how colorbar is plotted.
 - Draw lines as great circle arcs or straight lines in the grid.
 - Zoom plot up to only the valid region of data.
- Number of pages of PostScript output based on configuration file selections:
 - At least 4 depicting object definition and matching.
 - Additional pages for:
 - Merging using the double-threshold technique.
 - Merging using the fuzzy engine technique.

MODE PS Pages 1 and 2

Inten Thresh: >=0.000 kg/m^2=0.000 kg/m^2 Merge Thresh: >=1.250 kg/m^2=1.250 kg/m^2

match/merge

none

6 (2/4)

2

none

Angle Difference:

Intersection/Area:

Complexity Ratio:

Total Interest Thresh:

Intensity Ratio:

Area Ratio:

1.00

1.00

2.00

0.00

0.00

0.70

Merging:

Matching:

Simple(M/U): 4 (2/2)

Composites: 2

MODE PS Pages 3 and 4

MET Analysis tools and examples

→STATS→OUTPUT → AGGREGATE → User-defined display

MODE Analysis - input

• Usage:

mode_analysis -lookin path -summary | -bycase [-column name]
[-dump_row filename] [-out filename] [-help] [MODE FILE LIST]
[-config config_file] | [MODE LINE OPTIONS]

• example:

mode_analysis -lookin ./mode_output -summary -column area -column intensity_90 -column centroid_lat -column axis_ang -single -simple -obs_thr ge0.3 -area_min 1000

MODE Analysis - output

output of previous command:

Total mode lin	nes re	ead = 460	,802								
Total mode lin	nes ke	ept =	61								
Field	N	Min	Max	Mean	StdDev	P10	P25	P50	P75	P90	Sum
area	61	1002.00	3835.00	1613.34	836.77	1017.00	1081.00	1356.00	1624.00	3362.00	98414.00
intensity_90	61	8.89	54.97	20.10	11.45	13.21	13.46	16.51	20.07	40.64	1226.11
centroid_lat	61	34.32	41.86	38.35	2.75	34.37	35.38	39.93	40.51	41.03	2339.45
axis ang	61	-66.30	89.51	33.72	52.33	-55.66	0.66	59.94	74.81	82.56	2057.17

with slightly different options: -summary -pair -simple -model wrf4ncep

Total mode	lines	read =	460,802								
Total mode	lines	kept =	94								
Field	N	Min	Max	Mean	StdDev	P10	P25	P50	P75	P90	Sum
angle_diff	94	0.00	77.45	27.33	18.60	6.26	13.59	26.06	34.36	52.20	2569.32
interest	94	0.90	1.00	0.92	0.02	0.91	0.91	0.92	0.93	0.96	86.95

with -bycase option:

Total	mode	lines read	= 460,802								
Total	otal mode lines kept = 20,851										
	Fcst	Valid Time	Area Matched	Area Unmatched	<pre># Fcst Matched</pre>	<pre># Fcst Unmatched</pre>	# Obs Matched	# Obs Unmatched			
Apr 26	, 2005	00:00:00	20989	10087	75	103	29	928			
May 13	, 2005	00:00:00	79894	40067	157	137	41	1036			
May 14	, 2005	00:00:00	114407	21398	186	84	125	3291			

Copyright 2008, University Corporation for Atmospheric Research, all rights reserved

MODE Analysis – by radius,threshold

Copyright 2008, University Corporation for Atmospheric Research, all rights reserved

precip threshold

MODE Analysis – quilt plot

precip threshold

Copyright 2008, University Corporation for Atmospheric Research, all rights reserved

MODE object displacment analysis

- 9 cases from 2005
 - 48 km convolution radius, 3 mm rain threshold
- displacement of composite forecast objects from matched observed objects (in degrees)

Copyright 2008, University Corporation for Atmospheric Research, all rights reserved

VSDB Analysis

MET plans for the future

- New input formats
 - Grib2
 - More general NetCDF format
- New output
 - New analysis tools
 - Matched pairs
 - User-supplied graphics tools
- MET GUI
 - Automatic creation of configuration files and execution statements
- Expand verification methods
- Inclusion in a verification service developed by NOAA/GSD

MET plans for the future – verification methods^{∞}

- Additional spatial approaches
 - Scale separation Intensity-scale (Casati)
 - Contiguous rain area (Ebert/McBride)
 - Image warping (Keil and Craig; Lindstrom and Gilleland)
- Ensemble and probability forecast methods
- Methods for extremes
- Multi-model comparisons
- Cyclone track verification
- Other? Depends on the community...

What goes into MET? Community contributions

- DTC verification workshops
 - 2007, 2008 (http://www.ral.ucar.edu/~ericg/dtcworkshop.html)
 - <u>Goal</u>: Obtain guidance from verification and model evaluation experts
 - Current State-of-the-art
 - New methods, ready for implementation
- New verification methods
- Approaches for display of verification information using your favorite graphics package

What goes into MET?

- Verification Advisory Group (VAG)
 - Establish approaches for determining if new methods are "ready" and are useful
- Verification testbed
 - Standard datasets for evaluation of methods
- Desires of MET and WRF users
 - Send feedback to bgb@ucar.edu or met_help@rap.ucar.edu

How to learn more...

- MET help: met_help@ucar.edu
- MET home page
 - http://www.dtcenter.org/met/users/
- MET on-line tutorial
 - To be released soon... Keep an eye on the MET web page http://www.dtcenter.org/met/users/
- MET tutorial
 - Included in WRF tutorial July 2008; January 2009
- DTC verification workshop presentation
 - http://www.ral.ucar.edu/~ericg/dtcworkshop.html
- Spatial verification methods Intercomparison Project
 - http://www.ral.ucar.edu/projects/icp/index.html
- RAL verification page
 - http://www.rap.ucar.edu/research/verification/index.php
- WMO verification page
 - http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html