

Idealized Modeling of the Role of Stability and Shear on Mesoscale Gravity Wave Evolution

* Michelle Pitcel * Brian Jewett * Bob Rauber * Greg McFarquhar *

What is a Mesoscale Gravity Wave (MGW)

- * Correlated pressure-wind perturbations often found behind a Mesoscale Convective System (MCS)
- * MGWs can cause damaging winds and intense precipitation
- * MGWs can be very long lived and travel several hundred kilometers

Jet Max @ 300mb Low @ surface

MGW Synoptic Environment

- Black arrows denote acceleration * Form in grey area behind MCSs
- * Form with a strong stable layer present at the surface (Koch & O'Handley 1997)

Mesohigh-Wake Low Couplet

- * Black arrows are wind direction
- * Grey shading shows precipitation * Pressure-wind configuration similar to that in a MGW (Johnson & Hamilton 1988)

Characteristics of a MGW with a MCS

- * Period: 0.5-4h
- * Wavelength: 30-250km
- * Amplitudes can exceed several mb
- * Pressure min below depressed stable layer

MGW Movement Over Time

- * MGWs can move over several hundred km
- * Black lines are isochrones of low pressure
- * Isochrones show movement of one MGW

Goals

- * Explore the relationship between the following variables
 - Lapse rate within the stable layer > Temperature of the imposed cooling aloft

 - Vertical U-wind speed shear

To the following characteristics of MGW intensity

- > High and positive correlation between U-wind perturbation (U') and pressure perturbation (P')
- ➤ Increased temperature immediately following lower pressure
- Strength of surface winds in vicinity of large pressure changes

Forcing Mechanism

- * Evaporative cooling that occurs behind the convective line in the stratiform region of an elevated MCS
 - Downdraft depresses inversion/stable layer
 - Causes pressure falls and MGW genesis

Acknowledgements

- * NSF Grant ATM-0413824
- * The National Center for Supercomputing Applications (NCSA) at U of I
- * The Department of Atmospheric Sciences at U of I

Modeling MGWs

- * Using WRF version 2.2.1 and NCSA/LEAD workflow broker system
- * Evaporative cooling is simulated using an imposed cold thermal
- * Model domain is (x*y*z)=(83*83*7km)
- * In the model example images
 - > Cold thermal is falling at 5min
 - > Wave is at max activity at 15min

Sounding configuration for simulations * Each run uses a model-generated sounding

- * Γ=∂θ/∂z
 - * Γ_1 and Γ_2 range from 0-12 K/km
- * H₁ = 0-1800m; H₂ = H₁-7000m

Vertical Wind Profile

- * Cross-section
- * Depression of stable layer (L)
- * Max downdraft leads min P
- Theta Cross-Section

- * Cross-section
- * Depression of stable layer (L)
- * Theta shows stable layer

- * Pattern similar to Mesohigh-Wake Low Couplet
- * Wind is shaded; Pressure is contoured
- * Strong correlation between U' and P'

Summary of Current and Future Work

Current Work

- > 500 runs completed
- Analysis code written to process data and results from each WRF simulation
- ➤ What we know now about variable dependence for strong MGW cases
 - -10°C thermal combined with larger H, and Γ, and a smaller H, and Γ,
 - Results in larger negative U' and P'
 - Thermal appears to be the most important, followed by the lapse rates and heights

	MGW	Thermal	H,	Γ,	H ₂	Γ,	r	min uʻ	min p'
	Strong	-10	1750	12	2750	4	0.901	-7.436	-4.080
rk	Weak	-2	250	0	3750	8	0.948	-0.899	-0.683

Future Wor

- > Create Regime Diagrams to relate shear, stability, and cooling with MGW activity
- Substitute a constant cold source for the cold thermal
- Examine MGW response for the thermal versus a constant cold source

Correlation Coefficient Max variables at each point over all time

 R is correlation of U' and P' over all time * R implies MGW activity as wind speed should change as pressure changes