The Model Evaluation Tools (MET) Tutorial

Tressa L. Fowler John Halley Gotway Randy Bullock

June 2009

Today you get just a taste of MET

1.5 hour MET tutorial

1.5 day MET tutorial July 23-24, 2009

Overview

• Existing MET tools (Tressa)

• Recent MET enhancements (John)

 Imminent MET tools (Tressa and Randy)

MET Online Tutorial

<u>http://www.dtcenter.org/met/users/support/</u> <u>online_tutorial/METv2.0/index.php</u>

Walks you through MET tools command line by command line.

Existing MET Tools

- Data preprocessing
 - Convert ascii data to netCDF (ascii2nc tool)
 - Convert prepBUFR to netCDF (pb2nc tool)
 - Accumulate precipitation over time (pcp_combine)
- Individual forecast verification
 - Verify forecast with point observations (Point-Stat)
 - Verify forecast with gridded observations (Grid-Stat)
 - Neighborhood methods
 - Verify forecast objects with observed objects (MODE)
- Cumulative analysis (Stat-Analysis and MODE-Analysis Tools)

New MET Tools

- Generate Polyline Masking Region (GenPolyMask tool)
- Probabilistic forecast verification (Point-Stat and Grid-Stat)
- Wind forecast verification (Stat-Analysis).
- Intensity Scale (aka Wavelet) tool

Imminent MET Tools

CRUNCHY GORGONZOLA A Recipe For: MAGAZINE

- MODE time domain
- Ensemble forecast verification
- Satellite data ingest
- Cloud verification

MET is...

PCP-Combine Tool

- Functionality:
 - Sum precipitation across multiple files.
 - Add precipitation in 2 files (i.e. NMM output).
 - Subtract precipitation in 2 files (i.e. ARW output).
- Data formats:
 - Reads GRIB.
 - Writes gridded NetCDF as input to stats tools.

PCP-Combine Example

Copyright 2009, University Corporation for Atmospheric Research, all rights reserved

using ncview

PB2NC Tool

- Functionality:
 - Filter and reformat PREPBUFR point observations into intermediate NetCDF format.
 - Configuration file specifies:
 - Observation types, variables, locations, elevations, quality marks, and times to retain or derive for use in Point-Stat.
- Data formats:
 - Reads PREPBUFR using NCEP's BUFRLIB.
 - Writes point NetCDF as input to Point-Stat.

CWORDSH utility for FORTRAN blocking

ASCII2NC Tool

- Functionality:
 - Reformat ASCII point observations into intermediate NetCDF format.
 - One input ASCII format supported (10 columns):
 - Message_Type, Station_ID, Valid_Time
 - Lat(Deg North), Lon(Deg East), Elevation(msl)
 - Grib_Code, Level, Height(msl), Observation_Value
 - No configuration file.
- Data formats:
 - Reads ASCII.
 - Writes point NetCDF as input to Point-Stat.
 - Support additional ASCII formats based on user input.

Copyright 2008, University Corporation for Atmospheric Research, all rights reserved

MET Statistics modules (Point and Grid Stat): Traditional verification measures

- Gridded and point verification
 - Multiple interpolation and matching options
- Statistics
 - **Continuous** RMSE, BCRMSE, Bias, Correlation, etc.
 - Categorical POD, FAR, CSI, GSS, Odds Ratio, etc.
 - Probabilistic Brier Score, Reliability, ROC, etc. in v2.0

Matching approaches:

MET allows users to select the number of forecast grid points to match to a point observations and the statistic to use to summarize the forecasts. MET Statistics modules (Point and Grid Stat): Confidence Intervals (CIs)

- MET provides two Cl approaches
 - -Normal
 - Bootstrap
- Cls are critical for appropriate and meaningful interpretation of verification results
 - Ex: Regional comparisons

Accounting for Uncertainty

- Observational
- Model
 - Model parameters
 - Physics
 - Verification scores
- Sampling
 - Verification statistic is a realization of a random process.
 - What if the experiment were re-run under identical conditions?

Confidence Intervals (Cl's)

- Parametric
 - Assume the observed sample is a realization from a known *population* distribution with possibly unknown parameters (e.g., normal).
 - Normal approximation Cl's are most common.
 - Quick and easy.

 $\hat{\theta} \pm z_{\alpha/2} \hat{se}(\theta)$

Confidence Intervals (Cl's)

• Nonparametric

- Assume the distribution of the observed sample is representative of the *population* distribution.
- Bootstrap Cl's are most common.
- Can be computationally intensive, but easy enough.

Bootstrap Confidence Intervals (Cl's)

- Resample from data with replacement.
- Calculate statistic θ
- Repeat to get empirical distribution (histogram) of θ.
- Count in on both ends to get CI (percentile method)
- Do BCa to adjust for bias and skewness in resampling.

MET Statistics modules: Spatial verification approaches

Meaningful evaluations of spatially-coherent fields (e.g., precipitation)

Examples

- *What* is wrong with the forecast?
- At what scales does the forecast perform well?
- How does the forecast perform on attributes of interest to users?
- Methods included in MET
 - Object-based: Method for Object-based Diagnostic Evaluation (MODE)
 - Neighborhood; Example: Fractional Skill Score (FSS in Grid Stat)
 - Scale-separation: Casati's Intensity-Scale measure (Wavelet Tool)

Neighborhood verification methods (Grid-Stat Tool)

- Also called "fuzzy" verification
- Upscaling
 - Put observations and/or forecast on coarser grid
 - Calculate traditional metrics
- Provide information about scales where the forecasts have skill

Neighborhood verification methods

- Also called "fuzzy" verification
- Upscaling
 - Put observations and/or forecast on coarser grid
 - Calculate traditional metrics
- Provide information about scales where the forecasts have skill

Interpolation

© 2009 University Corporation for Atmospheric Research. All Rights Reserved.

Interpolation Methods

For Grid Stat, these are smoothing methods.

Neighborhood verification methods

Example: Fractional skill score (Roberts and Lean, MWR, 2008)

From Mittermaier 2008

Ebert (2008; Met Applications) describes the neighborhood methods in MET

Copyright 2008, University Corporation for Atmospheric Research, all rights reserved

Stat and MODE Analysis Tools

Used to :

- Filter
- Summarize
- Aggregate

results over many times, leads, thresholds, domains, etc.

Stat Analysis Tool: Run aggregate

"-job aggregate -dump_row out/aggr_ctc_job.stat -level P850-750"

Atmospheric Research, all rights reserved

Stat Analysis Tool: Run aggr

Stat Analysis Output (i.e. stat_analysis.out)

Copyright 2009, University Corporation for Atmospheric Research, all rights reserved

MODE Example

Forecast

Observation

And now John will cover the enhancements to MET for version 2.0.

RECENT ENHANCEMENTS TO THE MODEL EVALUATION TOOLS (MET)

26 June 2009

Release History

- □ METv0.9: Beta release July, 2007 □ METv1.0: First official release – January, 2008 METv1.1: Incremental upgrades – July, 2008 □ METv2.0: Current release – April, 2009 About 500 registered users from 66 countries 50/50 University/Non-University users On-line tutorial updated for METv2.0. Hands-on tutorial offered with the WRF-Tutorial Previous – February, 2009
 - Upcoming July, 2009

METv1.1 vs METv2.0

Visible Changes:

- Gen-Poly-Mask Tool
- Wavelet-Stat Tool

VSDB to STAT Format

- Verifying Probabilities
- Comparing Different Fields
- Verifying Winds
- Internal Fortran-Blocking

Gen-Poly-Mask Tool

Gen-Poly-Mask Tool

Inputs

- GRIB file defining domain
- ASCII Polyline verification region (Lat/Lon)

Ouput

 NetCDF file with masking bitmap

Define once, apply many times

Data Masking

- Choose a data field and threshold to define the masking region.
 - Same grid as data to be verified.

Masking Options

Masking for Grid-Stat, Point-Stat, and MODE:

Wavelet-Stat Tool

Wavelet-Stat Tool: Overview

- Implements Intensity-Scale verification technique, Casati et al. (2004)
- Evaluate skill as a function of intensity and spatial scale of the error.
- Method:
 - Threshold raw forecast and observation to create binary images.
 - Decompose binary thresholded fields using wavelets (Haar as default).
 - For each scale, compute the Mean Squared Error (MSE) and Intensity Skill Score (ISS).
 - At what spatial scale is this forecast skillful?

Difference (F-O) for precip > 0 mm

Wavelet decomposition difference

Wavelet-Stat Tool: Configure

Handling missing data:

- □ Set to zero for precipitation.
- Set to mean of field for continuous variables.

- \square 2ⁿ x 2ⁿ Grid
- Tiling options:
 - Automatic tile selection
 - User-defined tile(s)
 - □ Pad to nearest $2^n \times 2^n$

Wavelet-Stat Tool: Wavelets

Haar, centered

- □ Used in Casati et al. (2004)
- Default configuration
- Discontinuous data
- 1 member
- Daubechies, centered
 - 9 members
- B-spline, centered
 - 11 members

Haar Wavelet

Daubechies (10) decomposition

Wavelet-Stat Tool: Output

1. ASCII STAT file

- ISC (Intensity Skill-Score) line for each tile/threshold/scale
 - Header columns
 - Mean-Squared Error (MSE) and Intensity Skill Score (ISC)
 - Fcst&Obs Energy Squared (FENERGY2, OENERGY2)
 - Base Rate (BASER) and Frequency Bias (FBIAS)
- 2. NetCDF file
 - For each tile/threshold/scale
 - Forecast, Observation, and Difference fields
- 3. PostScript summary plot
 - Difference field image for each tile/threshold/scale

Wavelet-Stat Tool: Summary

- Decomposes error by spatial scale.
- Options for selecting:
 - Field and thresholds
 - Wavelet type and shape
 - \square 2ⁿ x 2ⁿ tile(s) definition
 - Keep tiles fixed for multiple cases in time.
- Added support to STAT-Analysis tool to aggregate ISC data through time.

Verifying Probabilities

Probabilistic verification methods added for Grid-Stat, Point-Stat, and Stat-Analysis.

Define Nx2 contingency table using:

- Multiple forecast probability thresholds
- One observation threshold

Forecast	Obser	Total		
Forecast	o = 1 (e.g., "Yes")	Total		
p_1 = midpoint of (0	n ₁₁	n ₁₀	$n_{1.} = n_{11} + n_{10}$	
and threshold1)				
p ₂ = midpoint of	n ₂₁	n ₂₀	$n_{2} = n_{21} + n_{20}$	
(threshold1 and				
threshold2)				
			•	
	•	•	•	
<pre>p_j = midpoint of (threshold<i>i</i> and 1)</pre>	n _{i1}	n _{io}	$n_{j} = n_{j1} + n_{j0}$	
Total	$n_{.1} = \Sigma n_{i1}$	$n_{.0} = \Sigma n_{i0}$	$T = \Sigma n_i$	

Example:

- Probability of precip [0.00, 0.25, 0.50, 0.75, 1.00]
- Accumulated precip > 0.00

Verifying Probabilities: Output

Statistical Output (Line Type):

- Nx2 Table Counts (PCT)
- Joint/Conditional factorization table with calibration, refinement, likelihood, and base rate by threshold (PJC)
- Receiver Operating Characteristic
 (ROC) plot points by threshold (PRC)
- Reliability, resolution, uncertainty, area under ROC Curve, and Brier Score (PSTD)

Verifying Probabilities: Example

Verify probability of precip with total precip:

Configuration file settings:

- □ fcst_field[] = ["POP/Z0/PROB"];
- \Box obs_field[] = ["APCP/A12"];
- fcst_thresh[] = ["ge0.00 ge0.25 ge0.50 ge0.75 ge1.00"];
- \Box obs_thresh[] = ["gt0.00"];

Comparing Different Fields

- For probabilities, compare two different fields.
- Generalize MET tools to compare any two fields.
- User must interpret results.
- Example: Total precip vs. convective precip
 - Configuration file settings:

obs_field[] = ["APCP/A24"];
obs_field[] = ["ACPCP/A24"];
fcst_thresh[] = ["gt0.0 ge20.0"];
obs_thresh[] = []; (leave blank to use fcst setting)

VSDB to STAT

METv1.1

VSDB File format:

- 11 Line Types
- 10 common header columns
 - •Times, var, level

Post-processing scripts/tools may need to be modified.

METv2.0

STAT File format:

- 15 Line Types
- 21 common header columns
 - •Fcst times, vars, levels
 - •Obs times, vars, levels

Verifying Winds

- Verify u, v, and speed, but not wind direction.
- Incremental support for verification of winds:
 - Enhancements for Point-Stat and Grid-Stat:
 - Add wind speed thresholds to determine which U/V pairs are included in the vector partial sums (VL1L2).
 - Enhancements for Stat-Analysis:
 - Support new job to aggregate one or more vector partial sum lines and compute statistics for the wind direction errors.
 - Mean forecast and observation wind directions, mean error (F-O), and mean absolute error

Wind Direction: Example

Point-Stat: VL1L2 Lines

VX MASK THRESH	LINE_TYPE	TOTAL	UFBAR	VFBAR	UOBAR	VOBAR	UVFOBAR	UVFFBAR	UVOOBAR
DTC_165 >=1 000	JL1L2	653	1.91117	0.07900	1.40658	-0.06126	13.01039	18.12575	20.31649
DTC_165 >=3 000	JL1L2	279	3.13561	-0.35096	2.87061	-0.30072	26.50472	30.03257	38.25362
DTC 165 >=5 000	JL1L2	96	5.21268	-2.74580	5.47813	-2.01667	49.90791	51.10427	70.78802
DTC_166 >=1 000	VL1L2	2431	-1.62742	0.25391	-1.23402	-0.04393	18.48309	29.70179	21.89615
DTC_166 >=3 000		1610	-1.84581	0.16061	-1.47491	-0.11217	24.45214	36.67400	29.36032
DTC 166 >=5.000	JL1L2	520	-0.93518	-0.45435	-0.25923	-0.49558	37.21821	52.51917	47.26483

Stat-Analysis: aggregate_stat jobs

COL_NAME: ROW_MEAN_WDIR:	-job aggregate_stat -fcst_thresh >=1.000 -line_type VL1L2 -out_line_type WDIR TOTAL FBAR OBAR ME MAE 2 183.25038 0.22749 -3.02289 7.88372 3084 103.87238 85.96574 -17.90663 NA
COL_NAME: ROW_MEAN_WDIR:	-job aggregate_stat -fcst_thresh >=3.000 -line_type VL1L2 -out_line_type WDIR TOTAL FBAR OBAR ME MAE 2 5.67967 0.81565 -4.86402 4.86402 1889 94.38140 80.45939 -13.92200 NA
COL_NAME: ROW_MEAN_WDIR:	-job aggregate_stat -fcst_thresh >=5.000 -line_type VL1L2 -out_line_type WDIR TOTAL FBAR OBAR ME MAE 2 0.93288 338.91179 -22.02109 22.02109 616 358.38152 319.08761 -39.29391 NA

Wind Direction: Output

□ AGGR_WDIR

- Aggregate VL1L2 partial sums lines
- 2. Derive wind directions and errors

□ ROW_MEAN_WDIR

- Derive wind directions and errors for each VL1L2 line
- 2. Compute mean of errors

Wind Direction: Suggestions

□ When aggregating, wind directions can cancel.

- 1. Verify over regions with unimodal wind direction.
- 2. Verify u and v components separately.

© 2009 University Corporation for Atmospheric Research. All Rights Reserved.

© 2009 University Corporation for Atmospheric Research. All Rights Reserved.

© 2009 University Corporation for Atmospheric Research. All Rights Reserved.

Fortran-Blocking

No need to run the cwordsh utility on PrepBufr files
 Fortran-blocking performed within PB2NC tool

Future Work

- Major releases of MET once per year.
- Continued research and development of forecast evaluation methods and tools:
 - Verification of ensembles
 - Cloud verification
 - Use of satellite data (HDF5/NetCDF4)
 - Database/Display system for MET output (Example)
 - MODE time domain (DEMO)
- Sample plotting scripts on MET website (R code)
 - Please contribute your plotting scripts!

Further Details

- For more detail on the METv2.0 changes:
 MET User's Guide
 - www.dtcenter.org/met/users/docs/overview.php
 - **README** within the MET release

Thank You

For more information:

http://www.dtcenter.org/met/users/

Questions for you

- What types (formats) of data do you use for verification?
- What is your biggest verification need?
- Do you use WRF ARW or NMM?