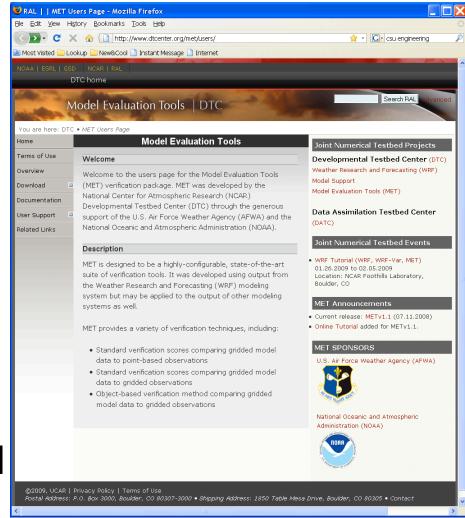
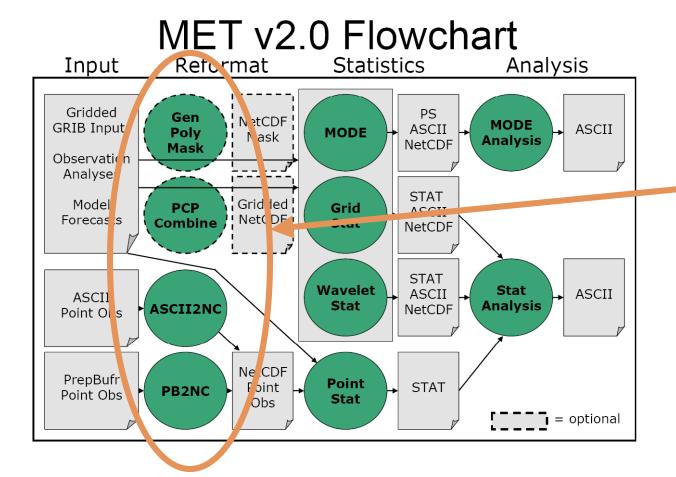
THE MODEL EVALUATION TOOLS (MET): COMMUNITY TOOLS FOR FORECAST EVALUATION

Tressa L. Fowler

Barbara Brown, John Halley Gotway, Randy Bullock, Eric Gilleland, David Ahijevych, and Tara Jensen

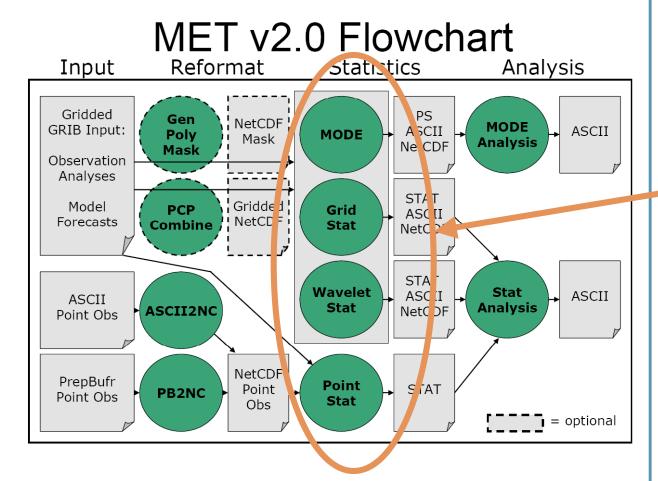
June 2009


MET: A community tool

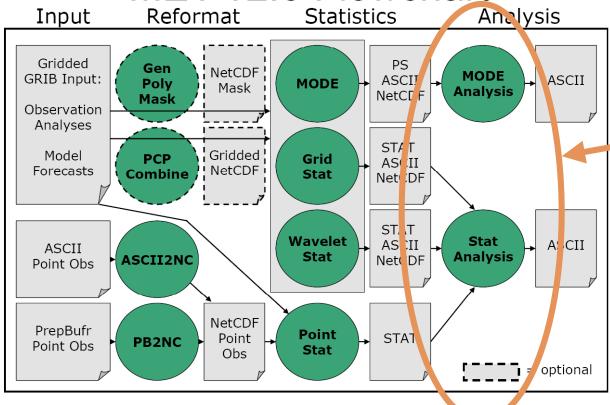

- The MET goal:
 - To provide a set of forecast evaluation tools that is
 - "State-of-the-art"
 - Openly available
 - "Created" and enhanced by the community
 - Evaluation methods
 - Graphical methods
- Community includes diverse users
 - WRF model developers
 - Developmental Testbed Center (DTC)
 - University researchers
 - Operational centers

MET has nearly 500 registered users:

Roughly 50 / 50 % University / Non-University


- A modular set of forecast evaluation tools
- Freely available
- Highly configurable
- Fully documented
- Supported through the web and an e-mail help

Reformatting tools:


Place data in the format(s) expected by the statistics tools

Statistics tools

- Traditional methods
 - Gridded obs
 - Point obs
 - Confidence intervals
- Spatial methods
 - Object-based
 - Neighborhood
 - Wavelet (v2.0)

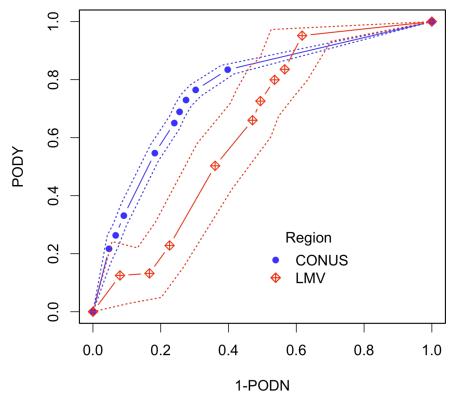
MET v2.0 Flowchart

Analysis tools

Summarize statistics across cases

Stratify
 according to
 various criteria
 (e.g., lead
 time)

MET Statistics modules: Traditional verification measures


- Gridded and point verification
 - Multiple interpolation and matching options
- Statistics
 - Continuous RMSE, BCRMSE, Bias, Correlation, etc.
 - Categorical POD, FAR, CSI, GSS, Odds Ratio, etc.
 - Probabilistic Brier Score, Reliability, ROC, etc. in v2.0

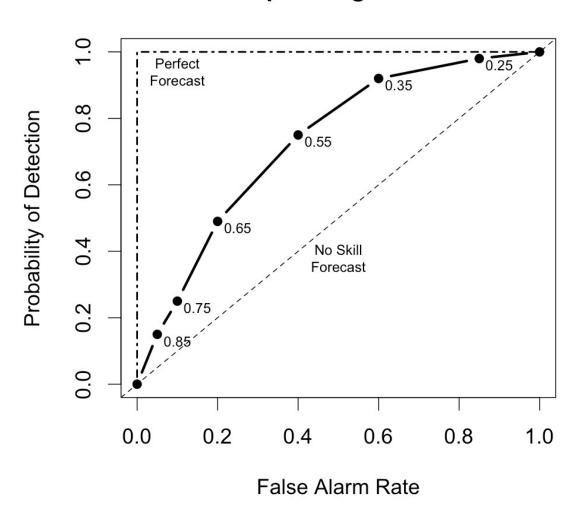
Matching approaches:

MET allows users to select the number of forecast grid points to match to a point observations and the statistic to use to summarize the forecasts.

MET Statistics modules: Confidence Intervals (CIs)

- MET provides two CI approaches
 - Normal
 - Bootstrap
- Cls are critical for appropriate and meaningful interpretation of verification results
 - Ex: Regional comparisons

Verifying Probability Forecasts


- Probabilistic verification methods added to Grid-Stat, Point-Stat, and Stat-Analysis.
- Define Nx2 contingency table using:
 - Multiple forecast probability thresholds
 - One observation threshold
- Example:
 - Probability of precip [0.0, 0.25, 0.50, 0.75, 1.0]

Forecast	Observation		Total
	o = 1 (e.g., "Yes")	o = 0 (e.g., "No")	Total
p_1 = midpoint of (0 and threshold1)	n ₁₁	n ₁₀	$n_{1-} = n_{11} + n_{10}$
p ₂ = midpoint of (threshold1 and threshold2)	n ₂₁	n ₂₀	$n_2 = n_{21} + n_{20}$
:		:	:
p_j = midpoint of (threshold <i>i</i> and 1)	n _{i1}	n _{i0}	$n_{j} = n_{j1} + n_{j0}$
Total	$n_{\cdot 1} = \Sigma n_{i1}$	$n0 = \Sigma n_{i0}$	$T = \Sigma n_i$

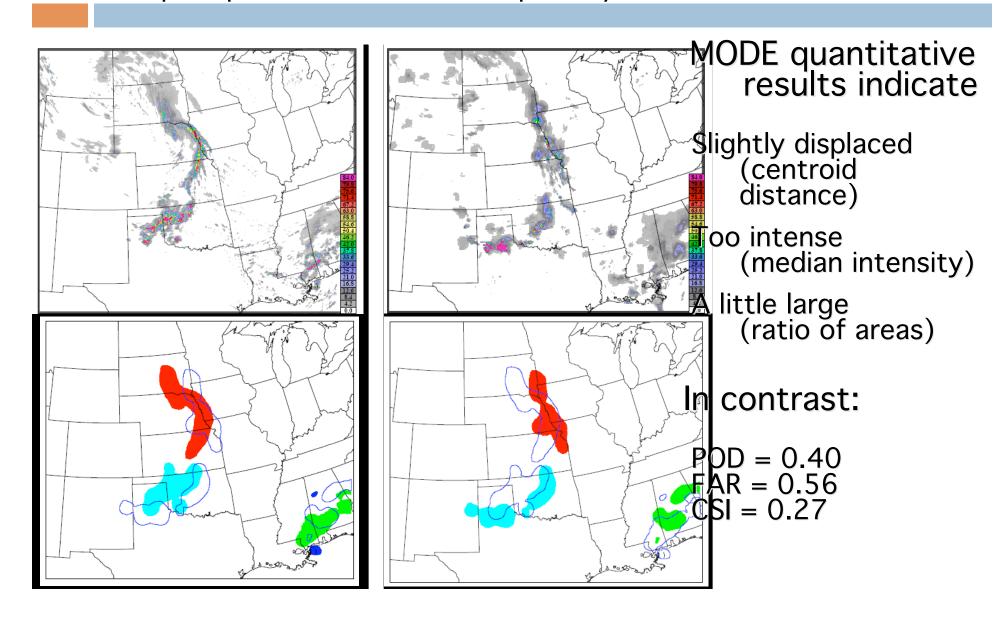
- Statistical Output:
 - Nx2 Table Counts
 - Joint/Conditional factorization table with calibration, refinement, likelihood, and base rate by threshold
 - Receiver Operating Characteristic (ROC) plot points by threshold
 - Reliability, resolution, uncertainty, area under ROC Curve, and Brier Score

Simple ROC Plot Created Using MET Text Output

Receiver Operating Characteristic

MET Statistics modules: Spatial verification approaches

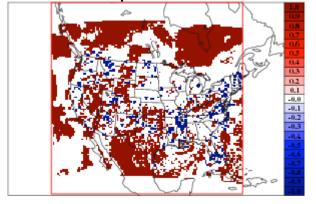
 Meaningful evaluations of spatially-coherent fields (e.g., precipitation)


Examples

- What is wrong with the forecast?
- At what scales does the forecast perform well?
- How does the forecast perform on attributes of interest to users?
- Methods included in MET
 - Object-based: Method for Object-based Diagnostic Evaluation (MODE)
 - Neighborhood; Example: Fractional Skill Score (FSS)
 - Scale-separation: Casati's Intensity-Scale measure (v2.0)

MODE Example

24-h precip forecast


Precip analysis

Wavelet-Stat Tool

- Implements Intensity-Scale verification technique, Casati et al. (2004)
- Evaluate skill as a function of intensity and spatial scale of the error.
- Method:
 - Threshold raw forecast and observation to create binary images.
 - Decompose binary thresholded fields using wavelets (Haar as default).
 - For each scale, compute the Mean Squared Error (MSE) and Intensity Skill Score (ISS).

At what spatial scale is this forecast skillful?

Difference (F-O) for precip > 0 mm

Wavelet decomposition difference

MET connections to the community

Goals:

Incorporate state-of-the-art methods contributed by the modeling, research, operational, and verification communities

Examples:

- Intensity-scale approach
- Neighborhood methods
- Graphical techniques

Outreach

- Town Hall meetings at AMS, NCAR
- Workshops (2007, 2008, 2009)
 - International verification experts + NWP experts + DTC staff
 - Guidance on methods and approaches to be included
- Spatial method intercomparison project (ICP)
- DTC Visitor Program
 - M. Baldwin: Verification testbed
 - B. Casati: Intensity-scale approach

Summary and plans

- MET is a community tool for forecast evaluation, which incorporates state-of-the-art methods
 - Modular architecture
 - Highly configurable
 - Extensive user support

For more information:

http://www.dtcenter.org/met/users/

- Plans and goals
 - Later versions
 - Ensemble forecasts, Cloud verification, Additional spatial methods, Wind methods
 - Database and display capabilities
 - Training
 - WRF tutorial (July '09, Winter 2010)
 - WRF Users' Workshop (June 2009)
 - Additional contributions from the community!
 - Tools
 - Graphics

MET Development Team

- Dave Ahijevych
- Tara Jensen
- Barbara Brown
- Tressa Fowler
- Eric Gilleland
- Randy Bullock
- John Halley Gotway
- Steve Sullivan

Scientists

Statisticians/scientists

Software engineers

For more information: http://www.dtcenter.org/met/users/