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Why do we need a hybrid system?

The WRF 3D-VAR system uses only climatological
(static) background error covariances.

Flow-dependent covariance through ensemble 1s
needed.

Hybrid combines climatological and flow-dependent
background error covariances.

It can be adapted to an existing 3D-VAR system.

Hybrid can be robust for small size ensembles.



What are the basic ingredients of
a hybrid system?

Ensemble forecasts: WRF-ensemble forecasts

A mechanism to update ensemble perturbations:
Ensemble Transform Kalman Filter (ETKF)

A data assimilation system: WRF 3D-VAR

It sounds simple.... :-)
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Ensemble Basics

Assume the following ensemble forecasts:
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Ensemble perturbations: &/ = x/ — x’

Ensemble perturbations in vector form:
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How to update ensemble perturbations?

ETKF technique updates ensemble perturbations by rescaling
innovations with a transformation matrix (Wang and Bishop 2003).

a
x — xfT 1 ransformation matrix

(solved by Kalman Filter Theory)

An adaptive scalar inflation factor has been introduced to
inflate at time i by matching spread to innovation vectors, [ [:

— f < Inflation factor

(For the derivation of [] see
Wang and Bishop 2003. )



The hybrid DA formulation....

Ensemble covariance 1s implemented into the 3D-VAR cost
function via extended control variables:
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C: correlation matrix for ensemble covariance localization
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How have we implemented hybrid (3DVAR -ETKF)
system at the (DATC)?

» WRF-VAR (hybrid)

Update: ensemble mean

WRF deterministic

forecast run

» Compute: Ensemble perturbations (ep2):
WRF Ensemble: u,v,t,ps,q, mean, and std_dev

MI » Compute: ensemble mean
M2 i
M3 WRE-VAR (QC-O0BS): filtered_ob.ascii
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M5 » WRF-VAR (VERIFY): ob.etkf ensemble
Mn » ETKF: Update ens perturbations

WRF ensemble run
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A few notes on hybrid settings

* alpha corr scale=1500km (Default)
* je factor (8)=2.0
e jb_factor (B-)=je_factor/( je factor -1 )=2.0

* alphacv method=2 (ensemble perturbations on
model space)

* ensdim alpha=10 (ensemble size)

: : : 1 1
N.B. Conservation of total variance requires: — + =1

B




Retrospective Test Runs

 Base runs: WPS, REAL and WRF

* Generate background error covariance for 3D-VAR

* Three hourly full cycling with conventional
observations:

» Hybrid (3D-VAR and ETKF)
» Only standard 3D-VAR



Experiment Set-up

Ensemble size: 10

Test Period: 15th August - 15th September 2007
Cycle frequency: 3 hours

Observations: GTS conventional observations
Deterministic ICs/BCs: Down-scaled GFS forecasts

Ensemble ICs/BCs: Produced by adding spatially

correlated Gaussian noise to GFS forecasts (7Torn et
al. 2006). (WRF-VAR and some additional tools.)

Horizontal resolution: 45km
Number of vertical levels: 57

Model tOpI 50 hPa For details see: Demirtas et al. 2009



What we have found:
Highlights of preliminary results



Ensemble Spread: 500 hPa height (m) std. dev.

WRF t+3 valid at 2007081900

cyc1 500mb Hgt. Ens. Std. Dev. for 2007081900_13 cyc2 500mb Hgt. Ens. Std. Dev. for 2007081900_13
Std. Deviation Std. Deviation
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RMSE for t8_45km: 2007081612-2007091512 (t+24h)
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Hybrid gives better RMSE scores for wind compared to 3D-VAR.



RMSE for t8_45km: 2007081712-2007091512 (t+48h)
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Hybrid gives better RMSE scores for wind compared to 3D-VAR.



RMSE Profiles for t8_45km: 2007081612-2007091512 (1+24h)
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Hybrid gives better RMSE scores for wind compared to 3D-VAR.



RMSE Profiles for t8_45km: 2007081712-2007091512 (t+48h)
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Hybrid gives better RMSE scores for wind compared to 3D-VAR.



Summary and Conclusions

A WRF-VAR-ETKEF based hybrid system has been
constructed with some enhancements at the DATC.

The hybrid system has been tested for the 30-day
retrospective runs which coincided with the hurricane
Dean’s active period. A few computational instabilities
noted during WRF runs, otherwise 1t was stable.

Ensemble spread is not “the bee’s knees”, but we noted
better spread with high inflation factors.

Verification (RMSE vertical profiles) results of hybrid test

are encouraging particularly for the lower troposphere.
They are better than those of standard 3D-VAR.



Future Work

» ETKEF part: Update inflation generation mechanism in
the light of recent applications.
» Hybrid part:
= Vertical localization: It is currently being tested.

= Additional 1solated runs are needed to evaluate various
tunable hybrid parameters:

 impact of increased weighted contribution from
ensembles

 the impact of smaller/larger horizontal length scale for
covariance localization

* investigating the benefit of tuning background error
covariance matrix with ensemble mean based forecasts

* using higher horizontal resolution



Thanks for listening
my hybrid saga... :-)
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