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Accurate meteorological forecasts can maximize power generated from 
the wind, a clean and renewable energy source

Turbine design – what “inflow”
characteristics affect large structures? 
(LES)
Wake Effects – how does the 
atmosphere modify the wakes which 
cause “downwind” turbines to collect 
less energy than upwind turbines? 
(LES)
Turbine siting and resource 
assessment in complex terrain – what 
locations are optimal for maximizing 
wind and minimizing turbulence?  
(LES-mesoscale)
Operational forecasting – how can 
wind park owners and power grid 
operators anticipate wind energy to 
balance power supply and demand? 
(mesoscale with LES-based wind farm 
parameterizations)

Premature fatigue of a turbine’s 
main shaft bearing, courtesy S. 
Schreck, NREL
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Colors indicate temperature

White barbs indicate wind 
speed and direction

Flow reverses direction twice above the surface in this valley!

Large-eddy simulation can represent very local effects due to 
topography or stratification as experienced by individual eddies

Flow aloft

3 km

1km



4
Lawrence Livermore National Laboratory

Mesoscale numerical weather prediction models excel at 
predicting “weather”

Mesoscale models capture the 
evolving pressure gradients over 
regions ~ 1000s of km

Historically, mesoscale model 
evaluations and improvements 
have focused on surface 
temperature and precipitation 
improvements, not winds in the 
lowest 200m

Mesoscale boundary-layer 
parameterizations have least 
predictive capability in stable 
conditions, complex terrain, or 
over complex and varied surfaces

Daily High 
Temperature

Winds
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Nesting large-eddy simulations within mesoscale simulations utilizes 
the strengths of each

Large-eddy simulation (LES) represents micro-meteorological turbulence more 
exactly by representing full spectrum of turbulence 

Although WRF 3.0.1 provides two subfilterscale turbulence models, several others 
have been developed and/or implemented at LLNL for use in WRF LES capability 
(see Kirkil et al. poster, P2B.2)

A robust LES model can provide guidance to improving mesoscale parameterizations
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But this nesting must be addressed with care

One-way or two-way nesting?
Is the representation of terrain 
appropriate (see K.A. Lundquist et al., 
Thursday @ 2:15, talk 6.4)?
Which PBL scheme is more 
appropriate? 

• MYJ provides “TKE”, but that means 
different things to mesoscale and to 
LES

Does the LES represent the turbulence 
spectrum appropriately? (See previous 
talk, Mirocha et al.)
Is the subfilterscale model robust to 
atmospheric conditions (stable 
conditions)? 
Is the LES sufficiently spun up? Are 
artificial inertial oscillations present?

Wind        TKE

Wind        TKE
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Domain 3:
65 km x 65 km
1.33 km horizontal resolution
1km terrain & land cover

Domain 2:
200 km x 200 km
4 km horizontal resolution
1 km terrain & land cover

Our one-way nesting of LES simulations within mesoscale simulations is 
initialized with three mesoscale nests

Domain 1:
600 km x 600 km
12 km horizontal resolution
1 km terrain & land cover
NARR BC
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With each progressively higher 
atmospheric resolution, higher 
resolution surface databases and 
different physics models may be used.

Our one-way nesting of LES simulations within mesoscale simulations is 
initialized with three mesoscale nests

These elevation contours and subsequent results are based 
on simulations for a location in the Eastern United States 
during fall: high pressure, no clouds, moderate winds
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Results shown here are from a series of seven nested simulations 
with complex terrain in mesoscale, complex slopes in LES

mesoscale runs

LES runs

Domain 1: Δx=12km Domain 2: Δx=4km Domain 3: Δx=1.33km

Domain 4: Δx=444m D 5: Δx=148m D 6: Δx=49m D 7: Δx=16.5m    
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Results shown here are from a series of seven nested simulations

mesoscale runs

LES runs

Domain 1: Δx=12km Domain 2: Δx=4km Domain 3: Δx=1.33km

Domain 4: Δx=444m D 5: Δx=148m D 6: Δx=49m D 7: Δx=16.5m

800m x 800 m

350

315

280
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Time-height cross sections from the center of each domain enable 
comparison of mesoscale and LES simulations
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LES winds differ from mesoscale winds in both timing and intensity – the 
increased resolution seems to allow for fundamentally different dynamics
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increasing through the morning,
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LES winds differ from mesoscale winds in both timing and intensity – the 
increased resolution seems to allow for fundamentally different dynamics
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D03, mesoscale, 
Δx = 1.33km
MYJ
36 hrs
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development with quiescent
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LES winds differ from mesoscale winds in both timing and intensity – the 
increased resolution seems to allow for fundamentally different dynamics

Lawrence Livermore National Laboratory

D03, mesoscale, 
Δx = 1.33km
MYJ
36 hrs
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LES suggests LLJ
does not propagate below
200m through most of the night, 
in contradiction to mesoscale
prediction
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Comparison of two LES domains indicates different representations of surface- 
based mixing – finer resolution shows more persistent mixing (for MYJ)
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YSU results are strikingly consistent across range of scales – surface-based 
nocturnal mixing looks almost the same!
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Nesting LES within mesoscale simulations can yield a powerful and 
accurate forecasting tool to enhance power collection from the wind

Nesting enables consideration of both weather and boundary-layer 
phenomenon, including topographic effects ~ 10s of meters (although we 
have smoothed terrain for this example)
One-way nesting is our preferred approach – two-way nesting seemed to 
induce nonsensical CFL violations in outer grids
Caution must be taken:
• Some PBL schemes provide TKE to inner LES nests, but this could be 

problematic: YSU results are more scale-independent, probably not 
because of real variability but because all TKE is LES TKE, not also 
mesoscale TKE

• Also be aware of: spurious numerical inertial oscillations (not the real 
ones), aspect ratio, resolution of entire turbulent specturm, 

Both models (PBL and SFS) should be capable of handling complex terrain, 
stable conditions, etc. (see 6.4 and P2B.2)

Observations *from the site of interest* are vital for 
validation
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Questions?

Julie K. Lundquist
Atmospheric, Earth, and Energy Division
Lawrence Livermore National Laboratory

lundquist1@llnl.gov
Voice: 925/422-1805
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What observations are required for validation of these simulations?

Simplest: wind profiles upwind of the wind farm
• Tradeoff between spatial and temporal resolution
• Ideal observations would ~10m vertical resolution between the surface 

and 200m at time intervals ~ 1 minute
Temperature & pressure profiles in the lowest 200m enable characterization 
of atmospheric stability
Turbulence measurements (in situ and/or remote sensing) help diagnose if 
models are correct for the right reason
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But limitations of each approach must be addressed with care

Mesoscale model:
• Are you providing appropriate 

“weather”, including PBL dynamics, 
to the LES?

• “TKE” means different things to 
mesoscale and to LES

Large-eddy simulations
• Does the LES appropriately use the 

pressure gradients provided by the 
mesoscale model?

• Does the LES appropriately use the 
TKE at the boundary provided by 
the mesoscale model?

• How does an LES “spin up” its TKE 
from the mesoscale TKE? 

— Inertial oscillations
• Are you using appropriate resolution 

and aspect ratio?
— Check turbulence spectra
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YSU -> TKE Wind Speed
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Classical stable boundary layer development is apparent in simulation results
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Use discretion and validation in choosing mesoscale boundary-layer 
turbulence parameterization – we see large differences on low-level shear

Contours of wind speed for hours 12-36 from same model (WRF), same forcing (NARR), 
Same resolution (12km 4km 1.33km) , but with different boundary-layer 
parameterizations (MYJ vs YSU). 

YSU @ 1.33km resolution
Wind Speed
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LES results exhibit different jet behavior – next steps include validation
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