The Use of the RUC DFI Initialization for the 2009 WRF-ARW 3 km Explicit Convective Forecasts:

Morris Weisman, Wei Wang, Kevin Manning, Ming Chen; NCAR/MMM

(10th WRF User's Workshop: June-23-26 2009)

2009 Domain: 3 km (1 May - 30 June)

<u>2008</u>: The use of WRF-3DVAR and 12 h of cycling at 9 km grid resolution produced spurious convection at times

15 May 2009 00 UTC

WRF-ARW Reflectivity

08 May 2009

07 May 2009 12 UTC

WRF-ARW Reflectivity

RUC and **Rapid Refresh**

RUC – Major NCEP upgrade 17 Nov 2008

Radar refl assim

TAMDAR RH

RR – Planned to replace RUC at NCEP in 2010, has radar assim

12-h fcst each hour for RUC and RR

RUC / RR hourly updating

Use latest observations to obtain the freshest analysis and forecasts for aviation, severe weather, and general forecast applications

Data types used

Rawinsonde (balloons) Wind Profilers (405 MHz, 915 MHz) RASS virtual temperatures VAD winds (WSR-88D radars) Aircraft (ACARS, TAMDAR) Surface (METAR , Buoy, Mesonet Precipitable water (GPS, GOES, SSM/I) GOES cloud-drift winds GOES cloud-top pressure/temp **Radar reflectivity, lightning** Ship reports/dropsondes **Satellite radiances (Rapid Refresh)**

Diabatic Digital Filter Initialization (DDFI)

Diabatic Digital Filter Initialization (DDFI) add assimilation of radar data

RUC model forecast

08 May 2009 12 UTC

WRF-ARW Reflectivity

<u>05/08/09</u> 12 UTC

13 UTC

15 UTC

18 UTC

RUC/DFI 1h

RUC/DFI 3h

)FI 3h

GFS-COLD 00h

GFS-COLD 1h

GFS-COLD 6h

13 June 2009 12 UTC

WRF-ARW Reflectivity

<u>06/14/09</u> 00 UTC 01 UTC

03 UTC

06 UTC

GFS-COLD 00h

RUC/DFI 1h

GFS-COLD 1h

RUC/DFI

GFS-COLD 3h

22

RUC/DFI 6h

GFS-COLD 6h

<u>05/16/09</u> 00 UTC 01 UTC

03 UTC

06 UTC

RUC/DFI 1h

RUC/DFI 3h

RUC/DFI 6h

GFS-COLD 00h

GFS-COLD 1h

GFS-COLD 3h

GFS-COLD 6h

Summary:

...The use of the 13 km RUC analyses along with DFI and the simple radar assimilation technique significantly improves model spin-up while minimizing spurious effects.

....time period for spin-up of ongoing convection reduced from ~6h to 3h

....improvements beyond 6 h less clear

...Forecasts more sensitive to initial state than model physics

...12 UTC update does improve forecast over previous 00 UTC initialization