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Outline

Simulating chemistry on both the global and regional scale

e MOZART global model used as boundary and initial conditions —
making it easily available to community via the web

e MOZART chemistry + GOCART aerosols
e Ensemble data assimilation plans

Aerosol-cloud interactions

e Southern Rocky Mountains simulations as part of BEACHON
e Dust-thunderstorm effects

North American Monsoon simulation
— Scalar Code in V3.1
— Lightning NOx for future version
— Aircraft emissions
— Merging US EPA anthropogenic emissions with Mexico anthropogenic
emissions

Preprocessor for MEGAN and wildfire emissions



Using Global Model Output for Boundary and Initial
Conditions in WRF-Chem

Instead of using idealized profiles for chemical species, use
results from MOZART chemical transport model using MOZBC

MOZBC is a 2" preprocessor that is run
after real.exe

e Qverwrites wrfinput / wrfbdy fields
with MOZART fields

e Have mapping of species for
RADM2, RACM, MADE/SORGAM,
CBMZ, MOSAIC 8 and 4 bins, and e e

OCAR _
. gurrentTy creating web page to allow users to obtain MOZBC

and its input files, and to download MOZART output
www.acd.ucar.edu/wrf-chem/



http://www.acd.ucar.edu/wrf-chem/

Implementing MOZART chemistry to have consistency at
both the global and regional scale

e Have compatible chemical mechanisms and consistent analysis
across scales and be able to use common data assimilation
capabilities

e MOZART has 85 gas-phase species and 157 reactions

e Implemented in WRF-Chem V3.0 and updating to V3.1

WRF-Chem/MOZCART MOZART
o3 03

Courtesy G. Pfister




Research-Based Regional to Global NWP with Chemistry

0 using ensemble-based DA approach
U one-way coupling of online models
O driven by perturbations in emissions,
initial conditions, (multi-physics),
(multi-chemistry)

0 using 20-40 ensemble members

WRF-Chem/DART
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Aerosol-cloud interactions

e Southern Rocky Mountains simulations as part of BEACHON
www.tiimes.ucar.edu/beachon
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http://www.tiimes.ucar.edu/beachon

Aerosol-cloud interactions

e Dust-thunderstorm effects

Role of dust on thunderstorm characteristics (precipitation)
during North American Monsoon thunderstorms

Outgoing Longwave Radiation

WRF only, Lin mphys WRF-Chem, Lin mphys IR satellite Obs
with aerosol-cloud interactions
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Aerosol-cloud interactions

e Dust-thunderstorm effects

Role of dust on thunderstorm characteristics (precipitation) during North
American Monsoon thunderstorms

WRF only, Lin mphys WRF-Chem, Lin mphys Observed
Reflectivity
with aerosol-cloud interactions
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North American Monsoon simulation

e Understanding the formation of an ozone enhancement in the
upper troposphere during the North American monsoon period

Hypothesis: convective transport of precursors + lightning NO, = O,

* Investigate the role of heat waves and wild fires in ozone
formation at the surface

Topography height meters MSL
120°W 105°W 90°W 75°W

» High resolution WRF-Chem
simulation (Ax = Ay = 4 km) over
the contiguous US and most of

Mexico during the summer of
2006

configuration details and preliminary
evaluation given in Hodzic et al

poster




Additions and Modifications made to WRF-Chem
V3.0.1.1 for the North American Monsoon simulation

— Aircraft emissions

— Merging US EPA anthropogenic emissions with Mexico
anthropogenic emissions

— Scalar Code in V3.1
— Lightning NO, for future WRF-Chem version



Modified Emissions for the North American Monsoon
simulation

e Aircraft emissions

1999, 1x1° annual average (Baughcum, Boeing); courtesy L.
Emmons

e Merging US EPA anthropogenic emissions with Mexico
anthropogenic emissions

U.S. EPA 2005 NEI Merged with Mexico NEI

E CO (mole km-2 hr-1) E CO (mole km-2 hr-1)

south_north
south_north

barthim Wb JUNZE 1557 06 2000
barthim Wb JUNZE 1555 35 2000

wost_sast wost_sast

Thanks to S. McKeen for 2005 EPA emissions



Implementation of PBL, Stratosphere, and Horizontal
Boundary Tracers

1) Horizontal boundary tracers— represents air coming into
domain
» Setto 1 at the lateral boundaries; initially O within model domain

2) Planetary boundary layer tracers
» Setto 1 between surface and PBL Height; initially O above PBL

3) Stratosphere tracers

» Setto 1 between the thermal tropopause and the top of the model
domain; initially O below the tropopause

Each pair of tracers has 1 passive scalar and 1 scalar that
decays with a time scale of 1 day — this allows an estimate
of the age of air



Height (km)

PBL Tracer 4 days into NAM Simulation
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Height (km)

Stratosphere Tracer 4 days into NAM Simulation
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Implementation of Lightning-NO, Parameterization for
Cloud Resolving Scales

1) Lightning flash rate is predicted:
FR = 5.7x10° w,, ., ** (Price and Rind, 1992)

2) Partitions between intracloud (IC) and cloud-to-ground
(CG) flashes based on Boccippio et al. (2001) climatology

3) Distributes NO horizontally within reflectivity > 20 dBZ
4) Distributes NO vertically using a Gaussian distribution
5) Amount of NO produced per flash

» 330 moles NO/flash for both CG and IC flashes

(Schumann and Huntrieser, 2007)

» Lightning NO, tracers; IC and CG flashrate counters



Lightning NO, Tracer 4 days into NAM Simulation

Lightning NOx Tracer
at 10 km altitude
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Ozone and O; Production 4 days into NAM Simulation

Rate of Change in O; due to Chemistry
O, at 10 km altitude at 10 km altitude
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Preprocessor for MEGAN and wildfire emissions

e Currently:

e To run MEGAN, you need to contact Christine Wiedinmyer
who will get you the required land-use, vegetation
information, etc. for your domain and grid resolution

o Wildfire emissions also require preprocessing to get
locations, size of fires + vegetation information

e Working on:
 Preprocessor that the user can run
 Hopefully will be ready this year

e Also:

* Fire emissions from C. Wiedinmyer will soon be available
on the web



Issue with running MEGAN emissions

e Currently:

MEGAN called every biogenic emission time step (e.g. 30 min):
- mebio emission rates
- chem = chem + mebio*dt/(p dz)
Where dt = meteorology time step (e.g. 1 minute)
=» not enough biogenic emissions being added into chem

e Solution:
Call MEGAN every meteorology time step

We are working on re-writing code to have ability to get emission
rates at a different time step than the meteorological time
step



Summary

Simulating chemistry on both the global and regional scale

e MOZART global model used as boundary and initial conditions —
making it easily available to community via the web

e MOZART chemistry + GOCART aerosols
 Ensemble data assimilation plans
Aerosol-cloud interactions
e Southern Rocky Mountains simulations as part of BEACHON
e Dust-thunderstorm effects
North American Monsoon simulation
= —edlar Cocetin V31
— Lightning NOx for future version
— Aircraft emissions

— Merging US EPA anthropogenic emissions with Mexico anthropogenic
emissions

Preprocessor for MEGAN and wildfire emissions
Correction for MEGAN emissions
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