

WRF-Chem Simulation of East Asian Air Quality: Sensitivity to Emissions Distributions

Xueyuan Wang and Xin-Zhong Liang

Illinois State Water Survey, University of Illinois at Urbana-Champaign

Georg A. Grell and Steven E. Peckham

NOAA Earth System Research Laboratory/Global Systems Division

Julian X.L. Wang

NOAA Air Resources Laboratory

10th WRF Users' Workshop, Boulder, CO, 25 June 2009

Acknowledgment: USEPA STAR award 740 EPA RD-83337301-0.

Introduction

- Developed finer resolution temporal (i.e. seasonal, day-of-week, diurnal) and vertical scaling for different categories and species of TRACE-P anthropogenic emissions inventory (Streets et al., 2003) in East Asia.
- Conducted two experiments in July of 2001: CTL (control run with default emissions) and SCL (scaling run with the new scaled emissions) to evaluate the roles of temporal and vertical scaling to prediction of NO₂, SO₂ and O₃.
- SCL continuous run four months: March, July, October and December of 2001 to evaluate model performance for East Asian air quality in different seasons.

(7 day spin-up, i.e., 22-28, Feb., 24-30, Jul., Sep., and Dec.)

Model settings and observations data

≻Domain:

central: 35.18°N, 110°E 30km (232×172) 28 vertical levels (σ) with 6 within PBL the first model layer at ~37m Parameterizations:

long & shot wave radiation: CAM land surface model: NOAH boundary layer schem: YSU dry deposition: Wesely (1989) photolysis scheme: Fast-J gas chemistry: RACM aerosol scheme: MADE/SORGAM as well as other parameters

≻Observations:

The Acid Deposition Monitoring Network in East Asia (EANET)

- Biogenic emissions: calculated "online" within WRF-Chem using Guenther et al. (1994).
- Biomass burning: monthly averaged emissions from Streets et al. (2003) and Woo et al. (2003).
- Volcano SO₂ emissions: monthly averaged emissions at Miyakejima (139.53°E, 34.08°N, 813m MSL and located in the west Pacific Ocean) from Kajino et al. (2004)

placed in the fifth model layer (925hPa) (estimated smoke height: 450-760m)

> Anthropogenic emissions: TRACE-P emissions inventory.

Diurnal variations for each sector of TRACE-P anthropogenic emissions

- Residential & weekday LDVs have 2 peaks;
- Percentage of LDVs & HDVs for each species was derived from U.S. EPA Nation Emissions Inventory 99.

Diurnal variations for seven major species of weekday transportation emissions

- CO, NMVOC & NH3 have 2 peaks (LDVs domaints 90%);
- \triangleright SO₂, NO_x peaks relatively small;
- \rightarrow PM₁₀ & PM_{2.5} relatively leveled during daytime;
- \blacktriangleright BC & OC use the same profile as PM_{2.5}.

Species	Height of Emission Layer (m)						
	0-76	76-153	153-308	308-547	547-871		
SO ₂	5	30	35	25	5		
NO _x	5	40	25	25	5		
СО	5	70	20	5			
NH ₃	5	75	15	5			
NMVOC	5	85	10				
PM _{2.5}	5	45	25	20	5		
PM ₁₀	5	55	20	15	5		
BC	5	65	20	10			
OC	5	70	15	10			

Derived from U.S. EPA NEI 99;

- SO2: largest in the 3rd model layer, others: maximized in the 2nd layer;
- > All species are small near the surface and above 500m.

Statistics of daily mean NO₂, SO₂ & O₃ in Jul., 2001 for SCL & CTL vs. observations

Site	Statistics	N	NO ₂		SO ₂) ₃	Bias = $\frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)$
		SCL	CTL	SCL	CTL	SCL	CTL	$GE = \frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)$
China	R	0.38	0.36	0.54	0.54			$\frac{1}{NGE} = \frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)$
	Bias	0.46	2.30	-1.09	1.43			<i>N</i> : the number of observat
	GE	3.28	3.93	2.81	3.15			<i>P</i> : WRF-Chem prediction <i>O</i> : observed values.
	NGE	106.22	144.27	95.91	142.54			
Japan	R	0.64	0.65	0.84	0.83	0.67	0.67	•
	Bias	-0.04	0.47	-0.10	0.05	2.87	2.11	•
	GE	0.89	1.06	0.52	0.55	8.96	8.87	
	NGE	82.33	114.74	92.53	109.95	42.90	42.05	

$$GE = \frac{1}{N} \sum_{i=1}^{N} (|P_i - O_i|)$$

$$NGE = \frac{1}{N} \sum_{i=1}^{N} (|P_i - O_i| / O_i)$$
N: the number of observations;
P: WRF-Chem predictions;

- \triangleright SCL simulation for NO₂ & SO₂ is in better agreement with observations at EANET sites in China and Japan, with higher correlation, lower bias, gross error & normalize gross error;
- SCL simulation is close to CTL for O_3 at sites in Japan.

Frequency Distributions of NO₂ and SO₂ at EANET sites in China (top) & Japan (bottom) in Jul., 2001

Over China: SCL frequency of NO₂ lower for lows; SO₂ lower for highs; SCL is better than CTL
 Over Japan: SCL frequencies are in better agreement with observations for NO₂ & SO₂

CTL-SCL: Surface NO₂ difference in Jul., 2001

- \triangleright differences all positive: CTL allocates more NO_x emissions in the surface layer
- large in major cities and industrial regions over China: 3-7 ppb
- largest in Beijing: up to 9 ppb
- small in South Korea & Japan

CTL-SCL: Surface SO₂ difference in Jul., 2001

- differences all positive
- ▶ 6~8 ppb over northern and eastern China, Sichuan Basin, up to 10~12 in Chongqing, Taiyuan
- > over 26 ppb in Beijng, Shanghai & Seoul
- less than 10 ppb over Japan

Diurnal cycle of surface NO_x and O₃ at EANET sites in Japan in Jul., 2001

- daytime: SCL close to CTL, both 0.4 ppb lower than observations at noon;
- nighttime: SCL agree well with observations, CTL significantly overestimates NOx by a factor of 1.2~2.5.
- both realistically predict daily maximum (4:00 pm) and minimum O₃ (7:00 am);
- daytime: SCL close to CTL, both 4 ppb higher than observations after 10: am;
- nighttime: SCL overestimate 2 ppb, CTL underestimate 2 ppb.

CTL-SCL: Surface daily, nighttime & daytime O₃ difference in Jul., 2001

- daily: -4~-6 ppb in northern & eastern China,
 -8 ppb in Beijing;
- nighttime: larger, -8 ppb over northern and eastern China, -12 ppb in Beijing;
- daytime: within ±2 ppb over vast areas of East Asia -2~-4 ppb in northern & eastern China.
- > reason for negative difference:
 - (1) larger NOx emissions at night for CTL produce high NOx concentrations, titrate more O₃;
 - (2) large portion of nighttime NOx emissions available for the next day for CTL, close to CTL.

Statistics of daily mean NO_2 , $SO_2 \& O_3$ in Mar., Jul., Oct., and Dec., 2001 (SCL vs. EANET observations)

NO ₂	Statistics	March	July	October	December	Four periods
China	R	0.52	0.38	0.54	0.65	0.58
	Bias	-0.28	0.46	-1.70	-4.03	-1.39
	GE	4.16	3.28	6.53	8.01	5.49
Japan	R	0.59	0.64	0.61	0.62	0.60
	Bias	-0.10	-0.04	0.30	0.18	0.09
	GE	1.03	0.89	1.03	1.00	0.99
SO ₂	Statistics	March	July	October	December	Four periods
SO ₂ China	Statistics R	March 0.55	July 0.54	October 0.45	December 0.62	Four periods 0.61
SO ₂ China	Statistics R Bias	March 0.55 -2.12	July 0.54 -1.09	October 0.45 -2.00	December 0.62 -3.55	Four periods 0.61 -2.18
SO ₂ China	StatisticsRBiasGE	March 0.55 -2.12 5.33	July 0.54 -1.09 2.81	October 0.45 -2.00 3.90	December 0.62 -3.55 5.03	Four periods 0.61 -2.18 4.27
SO ₂ China Japan	StatisticsRBiasGER	March 0.55 -2.12 5.33 0.45	July 0.54 -1.09 2.81 0.84	October 0.45 -2.00 3.90 0.74	December 0.62 -3.55 5.03 0.56	Four periods 0.61 -2.18 4.27 0.62
SO ₂ China Japan	StatisticsRBiasGERBias	March 0.55 -2.12 5.33 0.45 0.32	July 0.54 -1.09 2.81 0.84 -0.10	October 0.45 -2.00 3.90 0.74 0.29	December 0.62 -3.55 5.03 0.56 0.16	Four periods 0.61 -2.18 4.27 0.62 0.15

Bias =
$$\frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)$$

GE = $\frac{1}{N} \sum_{i=1}^{N} (|P_i - O_i|)$

N: the number of observations;*P*: WRF-Chem predictions;*O*: observed values.

O ₃	Statistics	March	July	October	December	Four periods
Japan	R	0.45	0.67	0.69	0.76	0.67
	Bias	-7.00	2.87	0.38	-0.24	-1.06
	GE	9.73	8.96	8.17	5.16	8.04

SCL simulations and observations of NO₂ at EANET sites in Mar., Jul., Oct., and Dec., 2001

Center for Atmospheric Science

SCL simulations and observations of SO₂ at EANET sites in Mar., Jul., Oct., and Dec., 2001

SCL simulations and observations of O₃ at EANET sites in Mar., Jul., Oct., and Dec., 2001

Center for Atmospheric Science

Summary

- Developed finer resolution temporal (i.e. seasonal, day-of-week, diurnal) and vertical scaling for different categories (i.e., power generators, industry, residential and transportation) and each species for TRACE-P anthropogenic emissions.
- Temporal and vertical distribution play and essential role on air quality modeling in East Asia.New scaled emissions improved WRF-Chem performance in predicting NO₂ and SO₂ (statistics and frequency distribution). The sensitivity is significantly large for NO₂ and SO₂.
- > Performance of both default and new scaled emissions are statistically similar for O_3 . The sensitivity is relatively weak for O_3 .
- New scaled emissions could well predict spatial and seasonal variation of NO₂, SO₂ and O₃ over East Asia.