Improving Noah LSM Cold Processes based on SNOTEL and CALM data

Michael Barlage, Fei Chen, Mukul Tewari, Kyoko Ikeda, Dave Gochis, Jimy Dudhia

NCAR - RAL/MMM

Snow modeling in Noah

- Snow physics:
 - Currently one-layer snow model in Noah (based on Koren et al. 1999, JGR)
 - Snow density change due to compaction, fractional snow cover, frozen-ground physics
 - Three-layer model development by Guo-Yue Niu and Zong-Liang Yang at UT-Austin
 - This has been coupled to Noah but needs more testing
 - Improving performance of one-layer snow model (work reported here)

"Good" Sites: Coupled WRF Results

"Bad" Sites: Coupled WRF Results

HRLDAS simulations to test new snow options

- 12 month simulations (Nov 2007 Nov 2008) are done using the High Resolution Land Data Assimilation System (HRLDAS)
- Use a 2-km grid centered on the Rocky Mountains
- All forcing variables come from WRF output except for solar radiation
- Use model level forcing to reproduce coupled WRF control simulation
- For solar forcing, use GOES radiation
- Test:
 - 1. Adjustment for slope and aspect (Zaengl)
 - 2. Time decaying albedo adjustment (Livneh)
 - 3. Decoupling surface during stable boundary layers
 - 4. Increasing maximum snow albedo to 0.85 and adjusting z_0 when snow is present

Included Slope-Aspect Adjustment to Solar Radiation

- Grid slope and aspect are calculated from 2km terrain field
- Solar radiation is adjusted based on location of sun and fraction of diffuse radiation
- Shown are the grid aspects binned to the cardinal directions
- Northward facing slopes will receive less radiation, south more, and east/west will affect diurnal cycle of incoming solar

Terrain Aspect

Snow albedo comparison against 94-95 Col de Port (France) data using Livneh's albedo formulation

Red: Obs, Black: V3, Green: V3 with albedo modification

- Snow albedo decreases with time simulating aging effects
- This new formulation is in WRF 3.1

Comparison of Last Date of 5mm SWE

Terrain Height [m]

	0- 1000	1000- 1500	1500- 2000	2000- 2500	2500- 3000	3000- 3500	3500- 4500
Control	34	32	35	75	115	144	167
+Livneh albedo	-1	0	0	0	+3	+4	+4
+terrain	0	0	0	0	0	0	0
+Ch	0	+2	+7	+4	+2	0	0
+Max + z_0	+1	+4	+5	+8	+12	+17	+18
Total	34	38	47	87	132	165	199
SNOTEL					147	163	141

Simulation options

Julian Day of Maximum SWE

	0- 1000	1000- 1500	1500- 2000	2000- 2500	2500- 3000	3000- 3500	3500- 4500
Control	-6	-4	3	28	45	69	92
+Livneh albedo	+1	0	+1	+1	+7	+9	+8
+terrain	0	0	0	0	0	0	0
+Ch	-4	-2	+3	+4	+2	0	-2
+Max + z ₀	+2	+3	+5	+8	+13	+11	+11
Total	-7	-3	12	41	67	89	109
SNOTEL					101	111	100

Terrain Height [m]

Simulation options

Maximum SWE [mm]

Terrain Height [m]							
	0- 1000	1000- 1500	1500- 2000	2000- 2500	2500- 3000	3000- 3500	3500- 4500
Control	10	11	16	66	190	355	481
+Livneh albedo	0	0	+1	+6	+22	+39	+36
+terrain	0	0	0	0	0	0	0
+Ch	+1	+2	+7	+14	+12	+13	+21
+Max + z ₀	+1	+2	+5	+19	+49	+63	+66
Total	12	15	29	105	273	470	604
SNOTEL					544	677	540

Simulation options

Effect of Terrain Adjustment

Max SWE[mm] - no terrain adjustment Difference[mm] with terrain adjustment

		Ν	Е	S	W
(0-2	29	25	29	35
grees	2-4	113	103	113	100
an) ar	4-6	162	147	173	147
2010	6-8	173	167	204	156
	8-10	179	171	221	160
	10+	144	155	208	135

	Ν	E	S	W
0-2	+1	0	0	0
2-4	+3	0	-4	0
4-6	+7	+1	-7	0
6-8	+12	+1	-12	-1
8-10	+15	+2	-16	-1
10+	+13	0	-19	-2

ō

Combined effects with observed SW **Bad sites**

Dash lines: Simulation with changes in Zo, albedo, GOES Solid line: Default simulation(with new WRF Ch)

By reducing sublimation and early spring melt, these mods improves timing of snow melt season

> Legend legend LV: Livneh albedo ML: model level forcing CH: WRF MYJ stability ZE: Zo = f(exposed veg)85: Max albedo = 0.85 SW: GOES SW forcing

Active Layer Thickness Simulations in support of the Arctic System Reanalysis

CALM Monitoring Sites

1km² measurement grid with 121 points 100m apart

CALM: Circumpolar Active Layer Monitoring

Test Simulation Configurations

27-year (1980-2006) point simulations using HRLDAS over CALM measurement sites

Forcing data: ERA-40 (1980-1999); JRA-25 (2000-2006)

control = 0.05, 0.25, 0.70, 1.5zeroflux = control + zero flux bottom stagger = 0.05, 0.15, 0.25, 0.40, 0.65, 1.05, 1.70, 2.75, 4.45, 7.20, 11.65, 18.85constant = $0.05, 0.25, 0.70, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, \ 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5$ highres = $0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, \ 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, 0.39, \ 0.425, 0.475, 0.525, 0.575, 0.625, 0.675, 0.75, 0.85, 0.95, 1.1, \ 1.3, 1.5, 1.7, 1.9, 2.25, 2.75, 3.25, 3.75, 4.25, 4.75$ organic = highres + inclusion of organic layer(peat) in top 12cm

• Ability to have heterogeneous soils in Noah

Barrow Simulation: Temperature Profiles

Black: control Blue: zeroflux Red: stagger Green: constant Orange: highres Brown-ish: organic

Barrow Simulation: Temperature Profiles

Black: control Blue: zeroflux Red: stagger Green: constant Orange: highres Brown-ish: organic

Barrow Simulation: Active Layer Thickness

Black: observations Blue: control Orange: highres Brown-ish: organic

	Bias	RMSD
Control	57cm	63cm
Highres	41cm	44cm
Organic	-1cm	17cm

Point Simulation: Snow Depth

Black: observations Blue: control Brown-ish: organic

Snow depth much too low

Point Simulation: Snow Depth

Point Simulation: Active Layer Thickness

Black: observations Blue: highres Brown-ish: organic Red: snow z₀

	Bias	RMSD
Highres	41cm	44cm
Organic	-1cm	17cm
Snow z _o	7cm	20cm

Point Simulation: Temperature Profiles

July January 0.0 -0.2 Soil Depth [m] -0.4 -0.6 -0.8 -1.0 250 265 280 245 255 260 275 270 Soil Temperature [K]

Black: organic Red: snow z_o

Changing z_0 improves snow, and hence temperature, simulation in winter and does not affect summer significantly

Summary

- Tested changes to Noah model to improve performance compared to SNOTEL and CALM observations
- Improvements are made in length of snow season, date of maximum SWE, and maximum SWE
- However, more improvements can still be made
- The addition of an organic layer greatly improves prediction of active layer depth
- Better snow simulation also improves winter temperature profiles