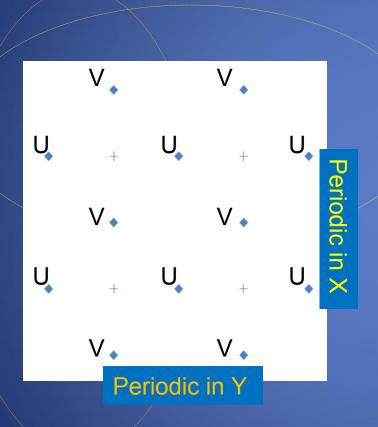
A description of the WRFv3.1 single-column model

J. Hacker (NCAR)

W. Angevine (CIRES/NOAA)


K. Arsenault (COLA/IGES)

Thanks to W. Wang and J. Dudhia for helping get the SCM into the WRF release.

Possible R&D topics for a WRF-SCM

- Process studies
- Physics evaluation
- Physics development
- Data assimilation in the PBL

Configuration

- 2x2 mass-grid stencil
- Periodic in X and Y
- All terrain heights equal but can be nonzero
- Other physics and dynamics set as usual (except Coriolis)

Initialization

- Initialized with ideal.exe, similar to other idealized cases
 - Requires input_sounding ASCII file
 - Requires input_soil ASCII file
- Initializes soil using the real-data initialization subroutine.
- Initializes the atmosphere like other ideal cases, but allows for non-zero terrain height and corresponding surface pressure

Run-time input

- Forcing can be idealized or from real data
- Forcing via auxiliary input stream; looks a lot like a lateral boundary condition file
 - W, and tendencies
 - $-U_q$, V_q , and tendencies
 - Advection information, and tendencies
- Here a tendency is the time rate of change of the forcing over the specified interval

More forcing details

- Forcing is 1D on arbitrary and time-varying height coordinates (AMSL). W, U_g , V_g are required but could be set to 0.
- External advection (optional) for variable ψ computed as: $\underline{\psi_{upstream} \psi}$
- Both the advection time scale τ and the upstream values are computed from an external data set (e.g. a 3D WRF simulation)

 \mathcal{T}_a

Effect is to relax the SCM toward a prescribed state

Namelist

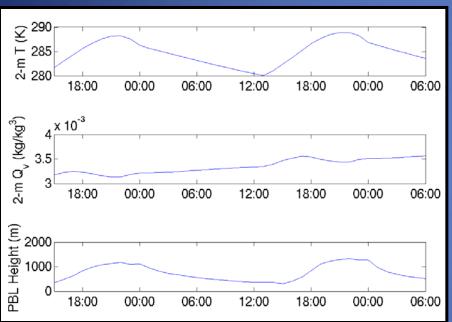
Namelist

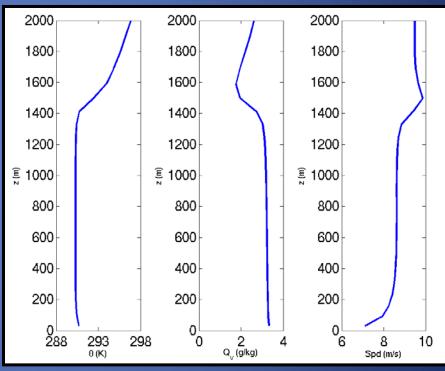
```
&scm
  scm_force
                            = 1
   scm force dx
                            = 10000
   num_force_layers
                            = 8
  scm_lu_index
                            = 2
  scm isltyp
                            = 4
                            = 0.5
   scm vegfra
  scm_lat
                            = 37.600
   scm lon
                            = -96.700
   scm th adv
                            = .false.
   scm_wind_adv
                            = .false.
  scm_qv_adv
                            = .false.
                            = .false.
   scm_vert_adv
```

Namelist

```
&dynamics = .true.
```

```
&bdy_control


periodic_x = .true.


periodic_y = .true.
```

Canned example (almost GABLS II)

- Initial conditions as in GABLS II
- Forcing as in GABLS II except during initial period (i.e. no transition)
- No advection (method for GABLS advection not available right now, but an easy extension)
- Runs an LSM instead of specified surface fluxes

Almost-GABLS II output

Valid 2100 UTC on the second day.

Real-data strategy

WPS

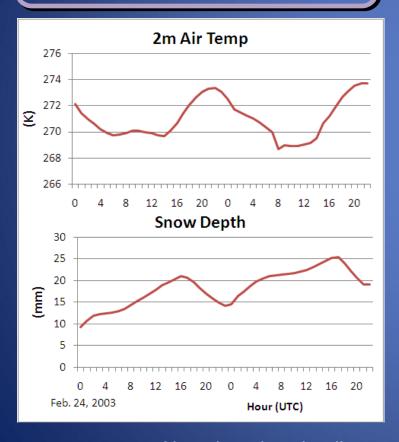
- Create domain centered at SCM location
- Create met_em* for simulation period

Input

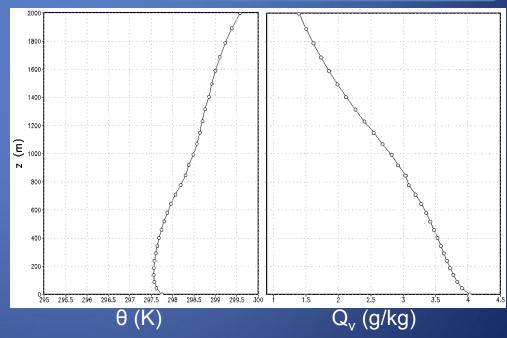
- Extract center profiles from met_em*
- Put into initial and forcing formats

Run

- Set up namelist
- Run ideal.exe and wrf.exe


Scripts (csh/NCL) for met_em* to initial condition and forcing file available from J. Hacker (unsupported)

WPS → NCL/*.csh Scripts → WRF SCM


Real Data Case Using WPS and Scripts

North Park, CO (FLOSS2)

– Feb. 23-25, 2003

- NARR Initial and Boundary Conditions
- YSU; Noah LSM; Lin MP
- 1 Ensemble Member
- Profiles Below at 21Z, Feb. 24, 2003

 Also, data downloading and subsetting scripts available for running daily to seasonal WRF SCM simulations (K. Arsenault)

Included in release: em_scm_xy

- make_scm_forcing.ncl to turn an ASCII profile into a netCDF forcing file
- ASCII input to make_scm_forcing.ncl, for testing
- input_sounding and input_soil files for testing
- Namelist that runs with example

Once-Asked Questions (OAQ)

- Q: Can I specify surface-flux time series?
- A: Not right now, but possibly in the near future
- Q: How are clouds handled?
- A: The same way as in the WRF. The flow is non-divergent so they may not be realistic without advecting in cloud hydrometeors, which would be a trivial extension.

Additional notes

Compatible with the Data Assimilation
 Research Testbed (DART); scripts to generate ensemble forcing available (unsupported)

 Specifying surface flux time series instead of running an LSM is an expected capability within the next year