MODELING AND FORECASTING THE ONSET AND DURATION OF A SEVERE DUTCH FOG

EVENT.

Ivar van der Velde, **Gert-Jan Steeneveld,** Bert Holtslag, and Ben Wichers Schreur (KNMI)

Societal Impact

WAGENINGEN UR

Current Fog Forecast Quality

	w	Fore			
uo		yes	no		HR= Hit rate
servatio	yes	42	44	86	HR = (42/86) = 0.49
	no	34	1438	1472	FAR = (34/76) = 0.45 FAR = False alarm rate
do		76	1482	1558	

KNMI-TR-222

Table 5-5: Verification of deterministic LVP categories. LVP-A or worse

Kunkel, B.A., B.A. Silverman, and A.I. Weinstein, **1974**: An evaluation of Some Thermal Fog Dispersal Experiments. *J. Appl. Meteor.*, **13**, 666-675. Gerber, **1981**: Microstructure of radiation fog, *J. Atmos. Sci.*, **38**, 454-458.

Duynkerke, P.G., 1991: Radiation fog: A comparison of model simulation with detailed observations, Mon. Wea. Rev., 119, 324-341.

Clark, P.A. and W.P. Hopwood, **2001**: One-dimensional site-specific forecasting of radiation fog. Part I:

Model formulation and idealized sensitivity studies, Meteorol. Appl., 8, 279-286

Long lasting problem, room for improvement

Introduction Case study

Fog event 25 November 2004 starting early morning

High pressure system over central Europe. Weak SE wind Synoptic conditions 25-11-2004; 00.00 UTC

Case analysis and observations

Cloud-top temperature

Brown: relative warm cloud-tops => fog

WAGENINGEN UNIVERSITY METEOROLOGY AND AIR QUALITY http://www.wdc.dlr.de/apollo/

Special Case: Near freezing point & extremely dry aloft

Modelling strategy: 4 different models

- two limited area models (i.e. regular weather forecast model)
 - calculate a regional 3-D forecast
 - initialized with data from global models
 - in our study: WRF and HIRLAM
- two 1-D models
 - calculate only the physical processes in vertical column
 - are forced by geostrophic wind and horizontal advection
 - in our study: 1-D reference model of Duynkerke (1991) and 1-D version of HIRLAM

WRF (v3) configuration

	domain 1	domain 2	domain 3
grid dimensions	30 km	6 km	1.2 km
	33833832	JOXJOXJZ	ΟΙΧΟΙΧΟΖ

Vert. resolution near the surface

WRF configuration

	micro-physics	WSM3 Bulk: 3 hydro- meteors	WSM5 Bulk: 5 hydro- meteors	WSM6 Bulk: 6 hydro- meteors	Ferrier 2 moment: 4 hydro- meteors
	boundary layer	YSU	MYJ		
		1 st order diffusion	1.5 order TKE-I		
Unified Noah/OSU Land Surface Model	land surface	5 soil layer	NOAH		
Conditional Territorial Spacefild Spacefi		Soil only	Vegetation		
Set Dataset Res Interflow Roman Res Construction Res Res Res Res Res Res Res Res			Soil hydrology		

Initial and boundary conditions: NCEP-FNL,

However: same results with ECMWF boundary conditions

WRF results: Cabauw

WRF results: Wind and turbulence at Cabauw

WRF results: Liquid Water content: 25 Nov 0000

Note: In reality fog onset was at ~0300 UTC

Sub-conclusions

. . .

WRF is unable to successfully forecast the severe fog event HIRLAM is only partly successful fog the severe fog event

Alternative approach needed: 1D modelling

1-D models: Modeled liquid water content

Duynkerke 1991

1D HIRLAM

Fog formation slightly too late No dissipation

Onset OK, Dissipation too early

MAGENINGEN UNIVERSITY

Conclusions

- **Fog is a subtile result of a mixture of processes working together**
- Current high resolution weather forecast models (WRF + HIRLAM) encounter extreme difficulties in forecasting fog.
- WRF and HIRLAM models can't maintain fog during daylight hours
- Duynkerke 1-D model performs better than 1D HIRLAM; although fog thickness is overestimated.
- More fundamental research on physical processes needed!!

L^{\downarrow} as fog diagnostic

HIRLAM

D91: impact model resolution

# Layers	Max Liq. Water Content (g/kg)	Fog onset (model start = 12.00 UTC)	
40	0.54	28.5	
24	0.44	25.8	
16	0.45	25.8	

WAGENINGEN UNIVERSITY

METEOROLOGY AND AIR QUALITY