Development of a Regional Arctic Climate System Model (RACM)

John J. Cassano - University of Colorado

Wieslaw Maslowski - Naval Postgraduate School

William Gutowski - Iowa State University

Dennis Lettenmaier - University of Washington

Mark W. Seefeldt - University of Colorado

Juanxiong He - University of Alaska ** Fairbanks

Need for Regional Arctic Climate System Model

- There are large errors in global climate system model simulations of the Arctic
- Observed rapid changes in Arctic climate system
 - Sea ice decline
 - Greenland ice sheet melt
 - Temperature
- Arctic change has global consequences
 - e.g. Sea ice change can alter the global energy balance and thermohaline circulation

Project Goals

- Develop a state-of-the-science regional Arctic climate system model (RACM)
- Include high resolution model components:
 - Atmosphere (Polar WRF 50 km)
 - Ocean (POP 9 km)
 - Sea ice (CICE 9 km)
 - Land (VIC 50 km)
- Model components coupled using NCAR CCSM4 coupler (CPL7)

Science Objectives

- Perform multi-decadal simulations to:
 - Gain improved understanding of coupled Arctic climate system processes responsible for changes in
 - Arctic sea ice cover
 - hydrologic cycle
 - freshwater export
 - Improve predictions of Arctic climate change
 - Identify limitations and physical and numerical requirements of global climate system model simulations of Arctic

Accomplishments to Date

- 2nd year of 4 year DOE funded project
- Coupling of individual model components to CPL7
- Model component evaluation studies
 - Polar WRF development and climatology
 - Simulation of sea ice loss with POP/CICE
 - Oceanic heat transport

Coupling of VIC and CPL7

- Led by Dennis Lettenmaier and Chunmei Zhu with Tony Craig
- Currently have VIC coupled to CPL7
- Have completed experiments with VIC coupled to CAM for global domain
- Next step is to resolve issues with regional domain for VIC / atmosphere simulations

Coupling of POP / CICE with CPL7

 Led by Wieslaw Maslowski, Jaromir Jakacki, Gabriele Jost, and Tony Craig

POP/CICE successfully runs with CPL7

in "data" mode

 Found minimal additional computational cost using CPL7

Coupling of WRF and CPL7

- Led by Juanxiong He with contributions from Tony Craig and Mark Seefeldt
- Minimize changes to WRF and CPL7
- Add new surface routine to WRF to accept fluxes from CPL7
- Currently WRF/CPL7 working in global and regional domain configurations
- Next step is to implement regional domain coupling with all other component models

Coupling of WRF and CPL7

- Variables passed from WRF to CPL7
 - PBL height
 - Zonal and meridional wind
 - Surface pressure, SLP
 - Potential temperature
 - Density
 - Humidity
 - SWD (NIR and Visible, direct and diffuse)
 - LWD
 - Convective and large scale precip, snow

- Variables passed to WRF from CPL7
 - Sensible heat
 - Latent heat
 - Zonal and meridional wind stress
 - LWU
 - Albedo (NIR and VIS, direct and diffuse)
 - Tsfc, T2m, q2m
 - SST
 - Snow depth
 - Sea ice and land mask

Sea level Pressure (January)

Barrow / SHEBA WRF Evaluations

- Goal: identify preferred radiation and microphysics parameterizations
 - radiation 5 combinations (lw-sw): RRTM-Dudhia,
 RRTM-Goddard, RRTM-CAM, CAM-Goddard, CAM-CAM
 - microphysics 6 schemes:
 Lin, WSM5, WSM6, Goddard, Thompson, Morrison
- Observations: Barrow (BSRN), SHEBA (surface met, clouds)
- Evaluate: temp., pres., SW_d, LW_d, LWP (SHEBA), IWP (SHEBA)
- Evaluate: over different months: Januar
- Evaluate: 10 km versus 50 km domain

Shortwave and Longwave Radiation Rankings

Shortwave Downward			
Total		avg	
1	lw_3-sw_3-mp_7	5.93	
2	lw_3-sw_3-mp_6	7.24	
3	lw_3-sw_3-mp_4	7.29	
4	lw_1-sw_3-mp_7	8.39	
5	lw_3-sw_3-mp_2	8.51	
6	lw_1-sw_3-mp_4	8.72	
7	lw_1-sw_3-mp_2	8.96	
8	lw_1-sw_3-mp_6	10.46	
9	lw_1-sw_2-mp_7	10.54	
10	lw_3-sw_2-mp_7	10.89	
11	lw_3-sw_2-mp_6	13.01	
12	lw_3-sw_2-mp_4	13.54	
13	lw_1-sw_2-mp_4	14.15	
14	lw_1-sw_2-mp_2	14.17	
15	lw_1-sw_3-mp_8	14.21	
16	lw_3-sw_3-mp_8	14.39	
17	lw_3-sw_2-mp_2	14.94	
18	lw_1-sw_2-mp_6	15.17	
19	lw_1-sw_2-mp_8	16.54	
20	lw_3-sw_2-mp_8	17.42	
21	lw_1-sw_2-mp_10	18.15	
22	lw_3-sw_2-mp_10	19.14	
23	lw_3-sw_3-mp_10	19.75	
24	lw_1-sw_1-mp_2	20.56	
25	lw_1-sw_3-mp_10	21.35	
26	lw_1-sw_1-mp_6	25.17	
27	lw_1-sw_1-mp_4	25.17	
28	lw_1-sw_1-mp_7	25.47	
29	lw_1-sw_1-mp_8	26.69	
30	lw_1-sw_1-mp_10	29.00	

- The CAM-CAM (3-3) radiation combination shows consistently the best performance
- Overall, the CAM-Goddard (3-2) and RRTM-CAM (1-3) radiation schemes perform well
- The RRTM-Dudhia (1-1) and RRTM-Goddard radiation combinations do not do well
- The microphysics results are all over the place and inconclusive

Longwave Downward			
Tota	avg		
1	lw_3-sw_2-mp_7	10.20	
2	lw_3-sw_2-mp_8	10.42	
3	lw_3-sw_3-mp_7	11.40	
4	lw_1-sw_1-mp_4	11.80	
5	lw_1-sw_1-mp_2	12.01	
6	lw_1-sw_1-mp_8	12.05	
7	lw_1-sw_1-mp_6	12.19	
8	lw_1-sw_1-mp_7	12.41	
9	lw_3-sw_3-mp_8	12.51	
10	lw_3-sw_2-mp_10	12.87	
11	lw_3-sw_2-mp_6	13.73	
12	lw_3-sw_3-mp_10	13.96	
13	lw_1-sw_3-mp_2	14.11	
14	lw_3-sw_2-mp_4	14.42	
15	lw_1-sw_3-mp_4	14.66	
16	lw_3-sw_3-mp_4	14.83	
17	lw_1-sw_3-mp_7	14.90	
18	lw_1-sw_2-mp_2	14.92	
19	lw_3-sw_3-mp_6	15.30	
20	lw_1-sw_2-mp_6	15.31	
21	lw_1-sw_2-mp_8	15.32	
22	lw_3-sw_2-mp_2	15.40	
23	lw_3-sw_3-mp_2	15.42	
24	lw_1-sw_2-mp_4	15.69	
25	lw_1-sw_3-mp_6	16.00	
26	lw_1-sw_3-mp_8	16.07	
27	lw_1-sw_1-mp_10	16.35	
28	lw_1-sw_2-mp_7	16.74	
29	lw_1-sw_2-mp_10	18.51	
30	lw_1-sw_3-mp_10	20.12	

WRF Pan-Arctic Simulations

- WRF 3.0.1.1 ARW dynamical core (native WRF code)
- Model forcing: NCEP2
- Horizontal domains: 50 km (wr50a)
- Vertical: 31 levels, 50 mb top
- 31-day simulations for January 1998
- Physics parameterizations:

Longwave Rad.: CAM (3)

Shortwave Rad.: CAM (3)

Microphysics: Goddard (7)

Cumulus: G-D (3)

Boundary Layer: MYJ (2)

Land surface: Noah (3)

WRF Pan-Arctic Simulations – Sea-Level Pressure

WRF Pan-Arctic Simulations – Sea-Level Pressure

Next Steps

- Finalize component model / CPL7 coupling
- Fully coupled simulations
 - Evaluation of fully coupled model
 - Multi-decadal simulations
 - Retrospective
 - Future climate
- Long-term goals
 - Regional simulations for next IPCC report
 - Additional climate system components
 - Ice sheets
 - Biogeochemistry