Global and Planetary WRF

Claire Newman (Caltech, Ashima Research) Mark Richardson (Ashima Research) Anthony Toigo (Cornell)

Overview

• Introduction

Who are we and what are our aims?

• PlanetWRF

How we globalized WRF and made it planetary

• Results

Selected MarsWRF and TitanWRF results

• Get planetWRF

How to download planetWRF at <u>www.planetwrf.com</u>

Who are we and what are our aims?

We are a group of planetary scientists who wanted a *single model* to look at:

- a range of atmospheric phenomena
- from the global down to the microscale
- on Earth, Mars, Venus, Titan and ?

PlanetWRF development was originally based at Caltech, Cornell and Kobe University, with a lot of help from the NCAR team.

Soon to be based at **Ashima Research** and **Cornell** - *and still very grateful for the NCAR team's help!*

Introduction

NB: Global WRF is part of the WRFv3.1 public release

planetWRF is publicly available at <u>www.planetwrf.com</u>

Globalizing WRF 1. Map scale factors

WRF used *conformal* rectangular grids => map-to-real-world scaling factor *m* was the same in x and y directions $(m_x=m_y=m)$

But we needed a *non-conformal* (lat-lon) grid to reach from pole to pole and make the mother domain global

= m_x = dx/dX = 1/cos(latitude), m_y = dy/dY = 1 = m_x \neq m_y

=> Needed to identify which map scale factor was required in all equations where *m* appeared, and reintroduce map scale factors where they previously cancelled (so had been omitted)

Globalizing WRF 2. Polar filters

In a lat-lon grid the spacing Δx between E-W grid-points becomes small near the poles

But CFL (Courant Friedrichs Lewy) criterion requires $\Delta t \leq \Delta x / U$ for stability

To avoid using small Δt <u>everywhere</u> because of small Δx <u>near poles</u>, we increase largest *effective* Δx by filtering out shorter wavelengths

In global WRF the Fourier filter turns on at 45° and allows fewer wavenumbers as latitude increases [module_polar_fft.F]

You can change the filtering latitude via namelist variable fft_filter_lat - or set it to 90 to turn off polar filtering entirely

Advantages of global WRF

- Extends WRF's existing 1- and 2-way coupling between domains: *except now mother domain can be whole planet!*
- No change in basic dynamics / physics at different scales
- No more complex coupling between two *different* global and mesoscale models
- 2-way => study multi-scale feedbacks in a global model

Global WRF is already in the WRFv3.1 public release Ideal case for Earth uses Held-Suarez forcing (BAMS 1994): compile em_heldsuarez

Planetary changes

• **Clocks and calendars**: in namelist we use planetary seconds, hours etc. (24 planetary hours = solar day, etc.) then convert to SI inside WRF

• **Planetary constants**: share/module_model_constants.F holds most [*e.g.* gravity, rotation rate] and others are set during initialization

• Solar fluxes for sw radtran: orbital parameters, time of day and location are used in non-planet-specific code to find incident solar flux

• Adapted physics: we use adapted versions of the MRF PBL and SFCLAY surface schemes (with *e.g.* hardwired minimums removed)

• New physics: we use a similar sub-surface scheme for each planet and a radiative transfer scheme tailored to each atmosphere. Mars has a CO_2 condensation/sublimation cycle; Titan has simple methane 'hydrology'

• For more details see Richardson et al. 2007

Results

Selected current and planned future uses of planetWRF

MarsWRF

Topics of interest: on Mars

Dust devils

Orographic clouds

Local dust storms

Regional dust storms and polar caps

Topics of interest: on Mars

Global / planet-encircling dust storms

Multi-scale feedbacks are vital to modeling their onset and growth

Modeling Martian dust storms

Local positive feedback:

Global positive feedback:

Modeling Martian dust storms

Need to capture *multi-scale feedbacks* - three approaches:

- 1. Limited-area simulations to study dust lifting and *local* feedbacks
- 2. Global high resolution dust simulations
- 3. Global standard resolution dust simulations with *nesting e.g.*:

1. Limited-area simulation of the Hellas basin

2. MarsWRF run at 0.5° global resolution

3. Nesting to study slope flows in Valles Marineris

We run MarsWRF on a standard lat-lon grid...

... or as a 'rotated pole' simulation

Large eddy simulation of convection on Mars

Horizontal grid spacing is 100m [total domain size 30kmx30km]

Topics of interest: on Titan

Topics of interest: on Titan

Tropospheric methane clouds and polar lakes

Reducing horizontal diffusion in TitanWRF

TitanWRF's troposphere

Latitude

Latitude

Latitude

TitanWRF's methane cycle

Maximum vertical velocity in troposphere

=> Methane cloud condensation

=> Surface precipitation

Get planetWRF

Download planetWRF at www.planetwrf.com

home about modeling people simulations accessibility

planetWRF

login

get planetWRF

The Planetary Weather Research and Forecasting Model

The PlanetWRF public release is now official! Click the "get planetWRF" tab on the lower left panel.

The Planetary Weather Research and Forecasting model (planetWRF) is a general purpose numerical model for planetary atmospheres research. It has been developed jointly at <u>Cornell University</u>, <u>Ashima</u> <u>Research</u>, the <u>Jet Propulsion Laboratory/Caltech</u>, and <u>Kobe University</u>. The core of the model is based on the terrestrial Weather Research and Forecasting (<u>WRF</u>) model developed at the National Center for Atmospheric Research (<u>NCAR</u>).

The first PlanetWRF paper was published late in 2007, and is available here.

WRF is a highly modular code written to take advantage of modern, high-speed, massively parallel computers, such as the <u>CITerra</u> system, but flexible enough to also run on a Mac laptop computer. WRF is used for a variety of applications in research on terrestrial micro- and meso-scale meteorology and in weather forecasting via data assimilation.

Download planetWRF at www.planetwrf.com

• Click on 'Get planetWRF' and follow the instructions:

Step 1: download and untar **WRFv3.0.1.1** from NCAR (*planetWRF for WRFv3.1 is coming soon*)

Step 2: download the **planetWRF** 'patch kit' from planetwrf.com (adds and modifies files to basic WRF)

Then follow further instructions on how to configure, compile, run and verify a standard MarsWRF run

Further work

• Biggest 'to do' item is a positive definite and monotonic advection scheme (the polar filter causes problems)

For more information about planetWRF

- Talk to me or contact us at <u>planetwrf@gmail.com</u>
- See also planetWRF paper [Richardson *et al*. JGR 2007]

If dx = gap between grid points in map coordinates, and dX = actual distance (in meters),then $dX = (1/m_x) dx$ and likewise $dY = (1/m_y) dy$

Original WRF

Global WRF

Conformal grid => for all map projections available (mercator, polar stereographic, etc.), $m_x = m_y$ at all points

=> Only one map scale factor (m) used, and omitted altogether when m_x and m_y cancelled Lat-lon grid $\Rightarrow x = a\lambda, y = a\phi,$ $\Rightarrow dx = a d\lambda, dy = a d\phi,$ whereas $dX = a \cos\phi d\lambda, dY = a d\phi$ $\Rightarrow m_x = dx/dX = \sec\phi, m_y = dy/dY = 1$ $\Rightarrow m_x \neq m_y$

=> Needed to identify which map scale factor was required in all equations where 'm' appeared, and reintroduce map scale factors where they previously cancelled (so were omitted)

Testing global WRF

For more tests see Richardson et al. JGR 2007

Globalizing WRF 3. Other changes

• **Polar boundary condition**: the initial solution was stable (v = 0 at the poles with no fluxes to or from the poles) but has been improved by the NCAR team

• **Sponge layer**: planetWRF is run as a standalone model with a high model top (over ~10 scale heights) for most applications, so damping of spurious waves in the top 3 or 4 layers was added to prevent reflection [module_planetary_damping.F]

Testing global WRF

Time and zonal mean T using Held and Suarez forcing (BAMS, 1994)

Compile as an ideal WRF case using:

compile em_heldsuarez

Objects of interest

Introduction

Earth

Mars

Titan

N₂ atmosphere $P_{s} \sim 10^{5} Pa, T_{s} \sim 288 K$ CO₂ atmosphere $P_{s} \sim 10^{3} Pa$, T_s ~150-300 K

Very eccentric orbit

Rotates **16x** slower

 $P_{s} \sim 10^{5} Pa, T_{s} \sim 90 K$

 N_2 atmosphere

Year lasts **30x** longer

Thick haze layers Methane 'hydrology'

Water cycle Oceans & land surfaces **Major topography Dust storms**