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j_loop: DO J=jts,jte
i_loop: DO I=its,ite

DO K=kts,kte
NK=kme-1-K+kms
TTEN1D(K)=0.

T1D(K)=T3D(I,NK,J)
P1D(K)=P3D(I,NK,J)
RHO01D(K)=rho_phy(I,NK,J)
DZ(K)=dz8w(I,NK,J)

ENDDO

IF (PRESENT(F_QV) .AND.           &
PRESENT(QV3D)) THEN
IF (F_QV) THEN

DO K=kts,kte
NK=kme-1-K+kms
QV1D(K)=QV3D(I,NK,J)
QV1D(K)=max(0.,QV1D(K))

ENDDO
ENDIF

ENDIF
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NVIDIA memory layout

NVIDIA GPUs have several layers 
of memory of varying capacity 
and latency:

Architecture Tesla C870 Intel Xeon E5420 *
Clock rate 1.35Ghz 2.50Ghz
Total memory 1.50GB 2.00GB**
Shared memory 16KB/block

We have targeted the Dudhia shortwave 
radiation scheme [1] for acceleration on GPUs. 
This scheme, comprising 600 lines of Fortran 
code, allows for cloudy and clear air absorption 
and scattering. The vertical columns are data 
independent.

We created a standalone shortwave radiation 
program, which simulates one call to the 
radiation scheme. The domain has horizontal 
dimension of 61 east-west and 74 north-south 
cells, and 27 vertical levels covering the 
Eastern United States.

Graphical processing units have traditionally 
been used to accelerate the rendering of 
graphics in programs. Their special 
architecture can be exploited for non-graphics 
applications with high parallelism and 
arithmetic intensity. The NVIDIA line of GPUs 
have been investigated for their potential to 
accelerate the microphysics portion of WRF 
[2]. 

These GPUs achieve their computational 
advantage by saturating the many floating 
point units with concurrent threads. The 
memory latency of the large on-board global 
memory is quite high and accesses should 
therefore be minimized. Furthermore, the 
accesses should be such that the call can be 
coalesced, otherwise the number of memory 
transactions will be increased, effectively 
reducing the bandwidth. 

The cards have on-chip registers and shared 
memory. Registers are per-thread-based and 
take 4 clock cycles to access. Shared 
memory are per-block-based and are equally 
fast, as long as access by threads do not 
cause bank conflicts. Conflicting memory 
accesses are serialized.

The NVIDIA cards can be programmed using 
a high level C-like language called CUDA. For 
more information visit: http://www.nvidia.com/

http://www-ad.fsl.noaa.gov/ac/Accelerators.html

This tool, developed by Mark Govett at NOAA, 
removes the tedious process of translating 
Fortran code into CUDA code. Transferring data 
and setting up the kernel launch is handled fully 
by the translator. Issues related to parallelization 
are left for the users to define for themselves. 
The number of threads per block, shared 
memory, and coalesced memory accesses must

be dealt with by hand. Further hand 
modifications are necessary for features that the 
translator does not support.

Although some modification will inevitably be 
necessary, this tool can save a tremendous 
amount of development time.

Below is a comparison of the original code and 
the CUDA code generated by the translator.

//for (j_=jts;j<=jte;j++) {
// for (i=its;i<=ite;i++) {
i = blockIdx.x * blockDim.x + threadIdx.x + 1;
j = blockIdx.y * blockDim.y + threadIdx.y + 1;

for (k=kts;k<=kte;k++) {
nk = kme - 1 - k + kms;
tten1d[FTNREF1D(k,kts)] = 0.;

t1d[FTNREF1D(k,kts)] = t3d[FTNREF3D(i,nk,j,di,dk,ims,kms,jms)];
p1d[FTNREF1D(k,kts)] = p3d[FTNREF3D(i,nk,j,di,dk,ims,kms,jms)];
rho01d[FTNREF1D(k,kts)] = rho_phy[FTNREF3D(i,nk,j,di,dk,ims,kms,jms)];
dz[FTNREF1D(k,kts)] = dz8w[FTNREF3D(i,nk,j,di,dk,ims,kms,jms)];

}

//if ( present(f_qv) && present(qv3d) ) {

if ( f_qv ) {
for (k=kts;k<=kte;k++) {

nk = kme - 1 - k + kms;
qv1d[FTNREF1D(k,kts)] = qv3d[FTNREF3D(i,nk,j,di,dk,ims,kms,jms)];
qv1d[FTNREF1D(k,kts)] = MAX(0.,qv1d[FTNREF1D(k,1)]);

}
}

//}

Kernel code comparison (excerpt)

Fortran CUDA (modifications for parallelization)
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Fine tuning Description

Removing 1D arrays Removed copies made of 3D arrays into local 1D arrays. This lower the number of 
memory reads to global memory and guarantees coalesced read/writes.

Shared memory Placed as many variables in shared memory as possible. Faster memory reads/writes.

7. Results7. Results
We compared the performance of one Tesla C870 card hosted by an Intel 
Xeon E5420 processor.

We saw good computational speedup on the device. As the SW routine is 
quite small, the transferring of data back and forth to the GPU limits any overall 
speedup attained by the GPU. We expect that when combined with the 
computationally expensive RRTM longwave radiation scheme (around 650ms 
execution time), the transfer time can be hidden. Furthermore, the launch of 
each kernel call has overhead, which can also be hidden.

Ignoring transfer and initialization time, the raw translated code gave a 3.3x 
speed improvement relative to the CPU-only configuration.

Coalesced Not coalesced

Th
re

ad
s M

em
ory Th

re
ad

s M
em

oryTh
re

ad
s M

em
ory

Global memory accesses

The massively parallel architecture of graphical 
processing units (GPUs) can be used to speed 
up numerical weather prediction. Part of the 
challenge in using this technology is converting 
existing Fortran code to Compute Unified 
Device Architecture (CUDA) accelerated code.

We present findings from using a NOAA- 
developed translator to accelerate WRF on 
GPUs. The translated code is hand-tuned for 
optimal performance.

We also present initial experiences from using 
a pre-release version of the Portland Group 
Fortran compiler for accelerator hardware.

3. 3. GPUsGPUs
Translator features

• Makes required cudaMalloc and 
cudaMemcpy calls

• Sets up execution configuration 
of kernel

• Converts multi-dimensional 
Fortran arrays to 1D CUDA 
arrays with explicit indexing

Hand modifications required

• Define block sizes

• Define grid dimensions

• Replace do loops with thread 
indices

• Use shared memory (if desired)

• Restructure code (if necessary)

6. Hand6. Hand--tuning for performancetuning for performance
We took the translated code and tested 
various hand optimizations. Our overall 
strategy was to minimize the number of 
expensive memory accesses.

The original shortwave code copies the 3D 
variables into 1D variables for each column. 
This was likely done to avoid having the 
subroutine alter the input arrays. However, 
on the GPU the arrays are already 
duplicated from main memory, so any 
alterations are not transferred back. This

causes a lot of extra expensive memory 
read and writes on the GPU. By removing 
the 1D arrays, the memory accesses are 
guaranteed to coalesce.

Shared memory can also be exploited. 
With 64 threads per block, the 16KB of 
shared memory per block can only hold 
two arrays with 27 levels. 6 calls (per 
vertical level) were made to the dz8w 
(grid spacing) variable, thus 4 global 
memory accesses (per vertical level) can 

be saved by copying this variable to shared 
memory. No other variable was reused 
enough to make it worth the move to shared 
memory.

The effect of these changes are shown in 
section 7. Results.

* using 1 out of 4 cores 
** per core

Architecture comparison

Removing 1D arrays and coalescing memory 
calls brings the speedup to 9.5x, and moving 
dz8w to shared memory gave a 9.6x speed 
improvement.

The small added speed improvement of using 
shared memory can be attributed to the fact that 
dz8w was not very heavily reused.

4. PGI Accelerator Fortran & C99 compilers4. PGI Accelerator Fortran & C99 compilers
http://www.pgroup.com/resources/accel.htm

The Portland Group is working on extending 
their Fortran and C compilers to compile for 
GPUs [3]. They use a directive-based 
approach, where compiler directives are 
placed in the source code to guide the 
compiler towards creating accelerated code.

The compiler directives are similar in style to 
OpenMP. !$acc region and !$acc end 
region are used to delineate sections of the 
code to be accelerated for GPUs. Without 
further guidance, the compiler will try to 
determine a way to parallelize the DO loops 
contained within region and end region. 
Wherever possible, the compiler will determine 
which variables must be passed to and from 
the GPU, and which variables must be 
temporarily allocated on the GPU.

Data movement and loop mappings can be 
hand-tuned by the developer using additional 

directives, for example to specify how loops 
should be parallelized. The compiler can aid in 
this by providing warnings of loops that cannot be 
parallelized due to data dependencies.

The compiler can also list arithmetic intensity for 
each for loop, which can be useful in determining 
how to parallelize the code. Loops with low 
arithmetic intensity are less likely to be 
successful in being accelerated because of the 
higher relative number of memory accesses.

The major advantage of this approach is that the 
compiler does most of the work associated with 
porting to GPUs. Also, two separate development 
trees, one in Fortran and one in CUDA, are not 
needed. This comes at the expense of having 
less control of the behavior of the GPU, and may 
in some cases limit the speedup possible.

At the time of writing, a working version of the 
SW code with accelerator directives was not 
finalized. However, we expect this to be a fruitful 
avenue of research.

Summary of directives*
• !$acc region 

Generate accelerated region.

• !$acc do parallel 
Following do loop should be 
organized in a grid.

• !$acc do vector 
Following do loop should be 
organized in blocks.

• !$acc do seq 
Following do loop should be 
run sequentially on the GPU.

• !$acc do host 
Following do loop should be 
run sequentially on the host.

• !$acc copyin(var) 
Copy var from host to GPU.

• !$acc copyout(var) 
Copy var back from GPU to 
host.

• !$acc local(var) 
Declares var to reside purely 
on the GPU, and will not be 
copied back or forth.

• !$acc end region 
End of accelerated region

* This list is not exhaustive

153 !$acc region
154 j_loop: DO J=jts,jte
155 i_loop: DO I=its,ite

...

272    DO K=kme-1-kte+kms, kme-1-kts+kms
273       ! NK=kme-1-K+kms
274 ! P in the unit of 10mb
275       RO(I,K,J)=P3D(I,K,J)/(R*T3D(I,K,J))
276       XWVP(I,K,J)=RO(I,K,J)*QV3D(I,K,J)*dz8w(I,K,J)*1000.
277 ! KG/M**2
278       XATP(I,K,J)=RO(I,K,J)*dz8w(I,K,J)
279 ENDDO

...

316    DO 200 NK=kme-1-kte+kms, kme-1-kts+kms
317       !NK=kme-1-K+kms
318       WW=WW+XLWP(I,NK,J)
319       UV=UV+XWVP(I,NK,J)
320 ! WGM IS WW/COS(THETA) (G/M**2)
321 ! UGCM IS UV/COS(THETA) (G/CM**2)
322       WGM=WW/XMU
323       UGCM=UV*0.0001/XMU
324 !
325       OLDABS=TOTABS
326 ! WATER VAPOR ABSORPTION AS IN LACIS AND HANSEN (1974)
327       TOTABS=2.9*UGCM/((1.+141.5*UGCM)**0.635+5.925*UGCM)

Code comparison (excerpt)

Fortran code with directives Compiler output

153, Generating copyin(qv3d(its:ite,kts:kte,jts:jte))
Generating copyin ...

155, Loop is parallelizable
157, Loop is parallelizable

Accelerator kernel generateed
155, !$acc do parallel
157, !$acc do parallel

Non-coalesced memory accesses for albedo
Non-coalesced memory accesses for sdown

272, Intensity = 1.25
Loop is parallelizable

316, Intensity = [symbolic], and not printable,
try the -Mpfi -Mpfo options

Loop carried scalar dependence for ww
Loop carried scalar dependence for uv
Loop carried scalar dependence for totabs
Complex loop carried dependence of sdown prevents

parallelization
Loop carried dependence of iil prevents
parallelization

...
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