
5. Fortran to CUDA translator5. Fortran to CUDA translator

AcknowledgmentAcknowledgment
We wish to thank Prof. Manish Vachharajani and NVIDIA for access
to a GPU cluster at the University of Colorado.

ReferencesReferences
[1] Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107
[2] Michalakes, J. and M. Vachharajani, 2008: GPU Acceleration of Numerical Weather Prediction. Parallel Processing Letters Vol. 18 No. 4. World Scientific.. pp. 531--548.
[3] The Portland Group Inc., 2008: PGI Fortran & C Accelerator Compilers and Programming Model Technology Preview.

j_loop: DO J=jts,jte
i_loop: DO I=its,ite

DO K=kts,kte
NK=kme-1-K+kms
TTEN1D(K)=0.

T1D(K)=T3D(I,NK,J)
P1D(K)=P3D(I,NK,J)
RHO01D(K)=rho_phy(I,NK,J)
DZ(K)=dz8w(I,NK,J)

ENDDO

IF (PRESENT(F_QV) .AND. &
PRESENT(QV3D)) THEN
IF (F_QV) THEN

DO K=kts,kte
NK=kme-1-K+kms
QV1D(K)=QV3D(I,NK,J)
QV1D(K)=max(0.,QV1D(K))

ENDDO
ENDIF

ENDIF

1. Introduction1. Introduction

2. WRF SW radiation2. WRF SW radiation

Thomas Nipen John Michalakes
(tnipen@eos.ubc.ca) (michalak@ucar.edu)

NVIDIA memory layout

NVIDIA GPUs have several layers
of memory of varying capacity
and latency:

Architecture Tesla C870 Intel Xeon E5420 *
Clock rate 1.35Ghz 2.50Ghz
Total memory 1.50GB 2.00GB**
Shared memory 16KB/block

We have targeted the Dudhia shortwave
radiation scheme [1] for acceleration on GPUs.
This scheme, comprising 600 lines of Fortran
code, allows for cloudy and clear air absorption
and scattering. The vertical columns are data
independent.

We created a standalone shortwave radiation
program, which simulates one call to the
radiation scheme. The domain has horizontal
dimension of 61 east-west and 74 north-south
cells, and 27 vertical levels covering the
Eastern United States.

Graphical processing units have traditionally
been used to accelerate the rendering of
graphics in programs. Their special
architecture can be exploited for non-graphics
applications with high parallelism and
arithmetic intensity. The NVIDIA line of GPUs
have been investigated for their potential to
accelerate the microphysics portion of WRF
[2].

These GPUs achieve their computational
advantage by saturating the many floating
point units with concurrent threads. The
memory latency of the large on-board global
memory is quite high and accesses should
therefore be minimized. Furthermore, the
accesses should be such that the call can be
coalesced, otherwise the number of memory
transactions will be increased, effectively
reducing the bandwidth.

The cards have on-chip registers and shared
memory. Registers are per-thread-based and
take 4 clock cycles to access. Shared
memory are per-block-based and are equally
fast, as long as access by threads do not
cause bank conflicts. Conflicting memory
accesses are serialized.

The NVIDIA cards can be programmed using
a high level C-like language called CUDA. For
more information visit: http://www.nvidia.com/

http://www-ad.fsl.noaa.gov/ac/Accelerators.html

This tool, developed by Mark Govett at NOAA,
removes the tedious process of translating
Fortran code into CUDA code. Transferring data
and setting up the kernel launch is handled fully
by the translator. Issues related to parallelization
are left for the users to define for themselves.
The number of threads per block, shared
memory, and coalesced memory accesses must

be dealt with by hand. Further hand
modifications are necessary for features that the
translator does not support.

Although some modification will inevitably be
necessary, this tool can save a tremendous
amount of development time.

Below is a comparison of the original code and
the CUDA code generated by the translator.

//for (j_=jts;j<=jte;j++) {
// for (i=its;i<=ite;i++) {
i = blockIdx.x * blockDim.x + threadIdx.x + 1;
j = blockIdx.y * blockDim.y + threadIdx.y + 1;

for (k=kts;k<=kte;k++) {
nk = kme - 1 - k + kms;
tten1d[FTNREF1D(k,kts)] = 0.;

t1d[FTNREF1D(k,kts)] = t3d[FTNREF3D(i,nk,j,di,dk,ims,kms,jms)];
p1d[FTNREF1D(k,kts)] = p3d[FTNREF3D(i,nk,j,di,dk,ims,kms,jms)];
rho01d[FTNREF1D(k,kts)] = rho_phy[FTNREF3D(i,nk,j,di,dk,ims,kms,jms)];
dz[FTNREF1D(k,kts)] = dz8w[FTNREF3D(i,nk,j,di,dk,ims,kms,jms)];

}

//if (present(f_qv) && present(qv3d)) {

if (f_qv) {
for (k=kts;k<=kte;k++) {

nk = kme - 1 - k + kms;
qv1d[FTNREF1D(k,kts)] = qv3d[FTNREF3D(i,nk,j,di,dk,ims,kms,jms)];
qv1d[FTNREF1D(k,kts)] = MAX(0.,qv1d[FTNREF1D(k,1)]);

}
}

//}

Kernel code comparison (excerpt)

Fortran CUDA (modifications for parallelization)

4C
C

On-chip

On-board

4C
C

40
0-

60
0

cl
oc

k
cy

cl
es

 (
C

C
)

4C
C

4C
C

4C
C

4C
C

Threads

Registers

Shared
memory

Global
memory

Fine tuning Description

Removing 1D arrays Removed copies made of 3D arrays into local 1D arrays. This lower the number of
memory reads to global memory and guarantees coalesced read/writes.

Shared memory Placed as many variables in shared memory as possible. Faster memory reads/writes.

7. Results7. Results
We compared the performance of one Tesla C870 card hosted by an Intel
Xeon E5420 processor.

We saw good computational speedup on the device. As the SW routine is
quite small, the transferring of data back and forth to the GPU limits any overall
speedup attained by the GPU. We expect that when combined with the
computationally expensive RRTM longwave radiation scheme (around 650ms
execution time), the transfer time can be hidden. Furthermore, the launch of
each kernel call has overhead, which can also be hidden.

Ignoring transfer and initialization time, the raw translated code gave a 3.3x
speed improvement relative to the CPU-only configuration.

Coalesced Not coalesced

Th
re

ad
s M

em
ory Th

re
ad

s M
em

oryTh
re

ad
s M

em
ory

Global memory accesses

The massively parallel architecture of graphical
processing units (GPUs) can be used to speed
up numerical weather prediction. Part of the
challenge in using this technology is converting
existing Fortran code to Compute Unified
Device Architecture (CUDA) accelerated code.

We present findings from using a NOAA-
developed translator to accelerate WRF on
GPUs. The translated code is hand-tuned for
optimal performance.

We also present initial experiences from using
a pre-release version of the Portland Group
Fortran compiler for accelerator hardware.

3. 3. GPUsGPUs
Translator features

• Makes required cudaMalloc and
cudaMemcpy calls

• Sets up execution configuration
of kernel

• Converts multi-dimensional
Fortran arrays to 1D CUDA
arrays with explicit indexing

Hand modifications required

• Define block sizes

• Define grid dimensions

• Replace do loops with thread
indices

• Use shared memory (if desired)

• Restructure code (if necessary)

6. Hand6. Hand--tuning for performancetuning for performance
We took the translated code and tested
various hand optimizations. Our overall
strategy was to minimize the number of
expensive memory accesses.

The original shortwave code copies the 3D
variables into 1D variables for each column.
This was likely done to avoid having the
subroutine alter the input arrays. However,
on the GPU the arrays are already
duplicated from main memory, so any
alterations are not transferred back. This

causes a lot of extra expensive memory
read and writes on the GPU. By removing
the 1D arrays, the memory accesses are
guaranteed to coalesce.

Shared memory can also be exploited.
With 64 threads per block, the 16KB of
shared memory per block can only hold
two arrays with 27 levels. 6 calls (per
vertical level) were made to the dz8w
(grid spacing) variable, thus 4 global
memory accesses (per vertical level) can

be saved by copying this variable to shared
memory. No other variable was reused
enough to make it worth the move to shared
memory.

The effect of these changes are shown in
section 7. Results.

* using 1 out of 4 cores
** per core

Architecture comparison

Removing 1D arrays and coalescing memory
calls brings the speedup to 9.5x, and moving
dz8w to shared memory gave a 9.6x speed
improvement.

The small added speed improvement of using
shared memory can be attributed to the fact that
dz8w was not very heavily reused.

4. PGI Accelerator Fortran & C99 compilers4. PGI Accelerator Fortran & C99 compilers
http://www.pgroup.com/resources/accel.htm

The Portland Group is working on extending
their Fortran and C compilers to compile for
GPUs [3]. They use a directive-based
approach, where compiler directives are
placed in the source code to guide the
compiler towards creating accelerated code.

The compiler directives are similar in style to
OpenMP. !$acc region and !$acc end
region are used to delineate sections of the
code to be accelerated for GPUs. Without
further guidance, the compiler will try to
determine a way to parallelize the DO loops
contained within region and end region.
Wherever possible, the compiler will determine
which variables must be passed to and from
the GPU, and which variables must be
temporarily allocated on the GPU.

Data movement and loop mappings can be
hand-tuned by the developer using additional

directives, for example to specify how loops
should be parallelized. The compiler can aid in
this by providing warnings of loops that cannot be
parallelized due to data dependencies.

The compiler can also list arithmetic intensity for
each for loop, which can be useful in determining
how to parallelize the code. Loops with low
arithmetic intensity are less likely to be
successful in being accelerated because of the
higher relative number of memory accesses.

The major advantage of this approach is that the
compiler does most of the work associated with
porting to GPUs. Also, two separate development
trees, one in Fortran and one in CUDA, are not
needed. This comes at the expense of having
less control of the behavior of the GPU, and may
in some cases limit the speedup possible.

At the time of writing, a working version of the
SW code with accelerator directives was not
finalized. However, we expect this to be a fruitful
avenue of research.

Summary of directives*
• !$acc region

Generate accelerated region.

• !$acc do parallel
Following do loop should be
organized in a grid.

• !$acc do vector
Following do loop should be
organized in blocks.

• !$acc do seq
Following do loop should be
run sequentially on the GPU.

• !$acc do host
Following do loop should be
run sequentially on the host.

• !$acc copyin(var)
Copy var from host to GPU.

• !$acc copyout(var)
Copy var back from GPU to
host.

• !$acc local(var)
Declares var to reside purely
on the GPU, and will not be
copied back or forth.

• !$acc end region
End of accelerated region

* This list is not exhaustive

153 !$acc region
154 j_loop: DO J=jts,jte
155 i_loop: DO I=its,ite

...

272 DO K=kme-1-kte+kms, kme-1-kts+kms
273 ! NK=kme-1-K+kms
274 ! P in the unit of 10mb
275 RO(I,K,J)=P3D(I,K,J)/(R*T3D(I,K,J))
276 XWVP(I,K,J)=RO(I,K,J)*QV3D(I,K,J)*dz8w(I,K,J)*1000.
277 ! KG/M**2
278 XATP(I,K,J)=RO(I,K,J)*dz8w(I,K,J)
279 ENDDO

...

316 DO 200 NK=kme-1-kte+kms, kme-1-kts+kms
317 !NK=kme-1-K+kms
318 WW=WW+XLWP(I,NK,J)
319 UV=UV+XWVP(I,NK,J)
320 ! WGM IS WW/COS(THETA) (G/M**2)
321 ! UGCM IS UV/COS(THETA) (G/CM**2)
322 WGM=WW/XMU
323 UGCM=UV*0.0001/XMU
324 !
325 OLDABS=TOTABS
326 ! WATER VAPOR ABSORPTION AS IN LACIS AND HANSEN (1974)
327 TOTABS=2.9*UGCM/((1.+141.5*UGCM)**0.635+5.925*UGCM)

Code comparison (excerpt)

Fortran code with directives Compiler output

153, Generating copyin(qv3d(its:ite,kts:kte,jts:jte))
Generating copyin ...

155, Loop is parallelizable
157, Loop is parallelizable

Accelerator kernel generateed
155, !$acc do parallel
157, !$acc do parallel

Non-coalesced memory accesses for albedo
Non-coalesced memory accesses for sdown

272, Intensity = 1.25
Loop is parallelizable

316, Intensity = [symbolic], and not printable,
try the -Mpfi -Mpfo options

Loop carried scalar dependence for ww
Loop carried scalar dependence for uv
Loop carried scalar dependence for totabs
Complex loop carried dependence of sdown prevents

parallelization
Loop carried dependence of iil prevents
parallelization

...

	Slide Number 1

