Climate downscaling for Arizona using WRF: Dependence of precipitation on model resolution and convective parameterization

Ashish Sharma and Huei-Ping Huang

School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287

Introduction

Climate in Arizona is generally dry with intermittent seasonal rainfall in summer and winter that is spatially heterogeneous.

> Winter is chosen for simulating precipitation because the

Domain	Outermost domain	Intermediate domain	Innermost domain
2 layer nesting	36 km	_	12 km
3 layer nesting	54 km	18 km	6 km
3 layer nesting	48 km	12 km	3 km
	umulus convect		

model generally simulates the climatology of the cold season more accurately than the warm season.

➤ Using the WRF 3.1 model, this study will perform a series of seasonal simulations with multiple nesting centered in Arizona to clarify the dependence of the simulated rainfall on the model resolution and the switching on/off of cumulus parameterization scheme.

Model Setup

Six hourly NCEP Global Analysis data on 1 x 1 degree grid (FNL) are used to construct the initial and boundary conditions.

> Liquid-form precipitation (RAINC and RAINNC) is analyzed.

> Analysis of the time series of local rainfall on a sub-domain

in southern Arizona (see the square box in Fig. 1a, defined as 111.78° W-113.61° W and 31.90° N-33.69° N) over which almost all precipitation is in the form of rain.

Results

➢ At 6 km, we find that when cumulus parameterization is turned off, grid-scale convective rainfall increases to compensate for the absence of subgrid-scale rainfall.

➤ At relatively coarse 12 km grid resolution, the rainfall produced by the subgrid-scale cumulus parameterization becomes more prominent, while grid-scale rainfall becomes weaker compared to the 6 km runs. The total rainfall is also weak compared to 6 km runs.

➢ While RAINC is smaller than RAINNC in most areas for 6 km and 12 km runs, a few exceptions such as the wet spot in northern Mexico occur due to the increasing importance of small-scale convection as one moves toward warmer and more humid latitudes.

Fig. 2. Time-series of hourly rainfall averaged over the box in Fig. 1a for 1 Nov'09-31 Jan'10 for set of runs that correspond to the 8 panels in Fig. 1.

Conclusion

➢ From the series of simulations of wintertime rainfall over Arizona, we find a significant increase in the total rainfall when model resolution is refined from 12 to 6 km, and relatively mild increase in rainfall when the grid size is further refined to 3 km.

➢ At the 6 km resolution, turning the cumulus parameterization off resulted in about the same amount of total rainfall, due to the compensation by an increase in the grid-scale rainfall.

➤ The 3 km run has a slight increase in the maximum rainfall over the mountains in central Arizona and emergence of more fine-scale structures in the rainfall pattern that reflects the influence of topography.

➤ Time series of hourly rainfall averaged over the square box in southern Arizona show that RAINC and RAINNC generally has a similar pattern in their temporal evolution; A rainfall event with a large RAINNC usually has a large RAINC.

Fig. 1. Seasonal cumulative rainfall for Nov'09-Jan'10. The box in (a) shows the area chosen for time-series of rainfall in Fig. 2. ➤ This indicates that for climate downscaling for Arizona it may be appropriate to switch off cumulus convective scheme when the grid size of the regional model is refined to 6 km or smaller.

Acknowledgments:

Sharma is supported in part by NSF AGS-0543256. Huang acknowledges support by NSF AGS-0543256, NSF AGS-0934592, and NOAA CPPA Program.

Corresponding author, Email: ashish.sharma.1@asu.edu

