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1. Introduction of surface-subsurface flow interaction (Choi 20@hoi
Accurate prediction of seasonal-interannual climate and Liang 2010), all of which are built upon retdis
variation continues to be a key challenge for theeting distributions of surface (soil and vegetation) eloteristics
community, especially over the extratropical regio®ne (Liang et al. 2005a,b).
hypothesis is using the nested regional climate ehod A comprehensive evaluation against observations at
(RCM) to better resolve the orographic effects froajor regional-local scales over the contiguous U.S. has
mountains, moisture transport from low-level jet$.Js), demonstrated that the CSSP performance is overall
and water recycling through land and coastal oceansuperior to both the CoLM and CLM3.5 (Yuan and Ilgan
processes that contain certain memory. The prestedy 2010), including substantial improvements for scefieat
focuses on the impact of incorporating a Conjumctiv fluxes, rooting zone soil moisture variations, soil
Surface-Subsurface Process model (CSSP; Liang.et altemperature, extreme runoff and streamflow, snowkpa
2010b; Yuan and Liang 2010) into the Climate-Weiathe and shallow water table depths. These advancesbwill
Research and Forecasting model (CWRF; Liang et al.very important for modeling the terrestrial hydgilocycle
2005a-d, 2010a) on the seasonal-intreannual hydratg and their feature changes identified with prectpta
forecasts, based on the important role the landasar extremes. The coupled CWRF-CSSP, as driven by the
processes played over the midlatitude (Koster .e2@04; global Climate Forecast System (CFS; Saha et #@6)20
Lorenz et al. 2010). shows high-quality downscaling skills in seasonal-
The CWRF has been developed on the basis of theinterannual predictions for precipitation and tstrial
Weather Research and Forecasting model (WRF,hydrology.
Skamarock et al. 2008) by incorporating numerous 2. Offline Evaluation for Soil Moisture
improvements that are crucial to climate scalesluding Driven by the atmospheric conditions from the North
interactions between land—-atmosphere—ocean, caoomect American Regional Reanalysis (NARR; Mesinger et al.
microphysics and cloud—aerosol-radiation, and gyste 2006), Yuan and Liang (2010) documented the CSSP
consistency throughout all process modules (Liaingle performance on terrestrial hydrology over the apmius
2010a). An essential aspect of the CWRF most ratetea U.S. Figure 1 compares soil moisture simulationshwi
the proposed research is its incorporation of a observations averaged over lllinois. For interahnua
state-of-the-art Conjunctive Surface-Subsurfacec&®  variability, the CoLM roughly simulates the majoetand
model (CSSP) in predicting soil temperature/moestur dry conditions occurred during 1984-2007. The CLBA3.
distributions, terrestrial hydrology variations, dan with new hydrologic parameterizations makes a §icant
land-atmosphere exchanges (Liang et al. 2010b). Theimprovement, having higher correlation coeffici€@C)
CSSP is rooted in the Common Land Model (CoLM; &ai  and lower mean absolute errdtdAE) than the CoLM. The
al. 2003,2004) with a few updates from Communitpda CSSP presents a further improvement, with |akg§&E
Model version 3.5 (CLM3.5; Oleson et al. 2008). Thest reductions (in mm) from the CLM3.5 (6.0, 21.6, J6td
prominent advances of the CSSP include an impr&aedi (4.0, 13.3, 20.7) for the top 3 soil layers. Theiovement
surface albedo parameterization (Liang et al. 2D0&c is especially pronounced near the surface, wheee th
scalable representation of subgrid topographicrobrn CLM3.5 substantially underestimates the observed

soil moisture (Choi et al. 2007), and an explio#atment interannual variability.
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Figure 1. Simulated soil moisture (mm) averaged over llindly CoLM, CLM3.5 and CSSP in comparison with

observations for top 0.1m, top 1m and top 2m €.is the correlation coefficient, abddAE is the mean absolute error.

Similar improvements are also reflected in the
lllinois soil moisture annual cycle (Figs. 1d-e)have the

Nov. 29-Dec. 3. The lateral boundary conditions are

updated every 3 hours. The study domain centeres at

CSSP best reproduces observations while the CoLM(37.5°N, 95.5°W), covers the whole continental Wh&h a

remains the poorest performer for all top (0.1m, 2m)
layers. This is particularly obvious iMAE (mm), for
which the CSSP yields (2.8, 7.2, 11.5) that are hmuc
smaller than even the CLM3.5 (5.0, 17.2, 19.1). THnge
MAE values are identified with low rooting zone soil
moisture variability, which was acknowledged by €dle et
al. (2008) as one of the major deficiencies renngjrin the
CLM3.5. The model skill in depicting the annual keyc

30-km grid spacing. The buffer zones are locatedssc14
grids along 4 domain edges, where varying LBCs are
specified through a dynamic relaxation techniquiarfy et

al. 2001).

Figure 2 shows the frequency distributions of root
mean square errorRMSH for the interannual variations
of seasonal mean precipitation predicted by the @r&
CWREF, which depicts that the CWRF reduces the grror

amplitude can be measured by the ratio of standardobviously in general. The peaks &MSE in different

deviation simulated over observed. For the rootzoge
layers, the CSSP produces the highest ratios (0.88), as
compared with the CoLM (0.44, 0.79) and CLM3.5 .2
0.48). Thus the CSSP generates not only the maBstie
phase but also the best amplitude of the soil m@st
annual cycle, systematically throughout the rootezo
3. CWRF Downscaling Seasonal Climate Prediction

After validating the CSSP standalone, we use inenl
with the CWRF to downscale the CFS seasonal fotecas
for wintertime. The initial experiments are compbse
five members over a period of 27 years (from 1982008)
for the forecast period Dec. 1-Apr. 30, with inlitéates at

leading month forecasts are larger than 1 mm/daytHe
CFS, while around 0.5 mm/day for the CWRF. The
geographic distribution of bias aRMSE(Fig. 3) indicates
that the CWRF reduces the errors significantly owetdle

to high latitude and the North American monsoon ENA
regions, especially over North Rockies and GreatelLa
regions where the CFS has large wet bias and low
predictability. Like many other GCMs (Liang et ab04),

the CFS has a dry bias over the Gulf States dubid;
while the CWRF alleviates the dry bias to some rmxte

is an issue that needs further

which interesting

investigation. On average, the CWRF reducesRMSE
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Figure 2. Frequency distribution of root mean square
errors RMSE mm/day) for the interannual variations of

the seasonal mean precipitation over land prediotethe

CFS and CWRF based on 5 ensemble members during

wintertime of 1982-2008. Seasonal precipitatiomiisned
at an interval of 0.1 mm/day.
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Figure 3. Geographic distributions of the bias aBRMSE
(mm/day) of seasonal precipitation for the CFS @WdRF.
Figure 4 presents spatial distributions of obsé and
forecasted number of rain days and"Qfercentile daily
precipitation during boreal winter (JFM) averagedgero
1983-2008. Similar to the bias pattern (Fig. 3 ©©FS
overestimates the number of wet days greatly alivweg
northern tier of the domain; while the CWRF dowisca
results demonstrate more accurate amount and isutfic
geographic details, especially over the westerncamdral
U.S., and the NAM region. Over the major mountain
regions (e.g., the North Rockies,
Sierra-Madre-Occidental), the improvement are nyadioie

to the fine resolution of orographic precipitatiaver the

central U.S., the reasonable bowen ratio (see Fifpr
surface heat fluxes) and its related land-atmospher
interaction play an important role; while over tGeat
Lake region, the enhancement are dependent on the
incorporation of some new surface processes inutudi
11-layer lake model, a 5-layer snow model and a
subsurface frozen soil parameterization. Figure Isb a
shows that though the patterns of"9percentile daily
rainfall are similar between the CFS and CWREF, |#ter
better resolves the extreme precipitation overrthethern

California (>40 mm/day) and Gulf States (>30 mmjday
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Figure 4. Average number of rain days (>1 mm) and'95
percentile daily rainfall (mm/day) for boreal wintgJFM)
during 1983-2008 from observation, CFS and CWRF.
Figure 5 compares the predicted average surfade hea
fluxes with the NARR data during the boreal winféhe
CFS simulates much less sensible heat than the NARR
while the CWRF downscaling reduces the underesitmat
significantly. The CWRF generates less latent Haat
than the CFS, and results in better simulations dhe
northern and western regions, where the precipiati
prediction is better than the CFS (Fig. 3). Coroesting to
the dry bias over the Gulf States (Fig. 3), the GWR
produces less latent heat than the NARR; while dret
insufficient precipitation leads to low latent heat vice
versa is an unknown issue. However, the CFS present
different evapotranspiration (ET)-precipitationat@nship

over the same region: it has dry bias for predipitaand

Appalachian and wet bias for ET. In other word, the CWRF providesren

reasonable precipitation efficiency (Yuan et al0&0than
the CFS over the Gulf States. As compared with &lob



Runoff Data Center (GRDC) data, the CWRF generatesbut the simulated snow water equivalent (SWC)ilkless
more detail geographic characteristics than the (& than the Canadian Meteorology Center (CMC) analysis
5). In particular, the CWRF correctly predicts thereal data (Fig. 5). In contrast, the CWRF provides mhetter
winter runoff over the northwestern and eastern.U.S SWC, which indicates the advantage of snow module i
which is totally missed by the CFS. Over the Rocky RCM.

Mountain region, the CWRF produces larger runofinth 4. Summary

the CFS and GRDC. Besides the influence of positive The 30-year continuous offline integration and 27e
precipitation bias (Fig. 3), this enhancement mikgly cold season online downscaling forecasts indidzdé the
result from its incorporation of the effects of gud CWRF incorporation of the CSSP shows substantial
topographic control and shallow bedrock constraint improvements for precipitation characteristicsfate heat
surface and subsurface water movements. The diffesg fluxes, rooting zone soil moisture variations, erie
however, may well be within observational uncetiam runoff and snow pack. To further improve the seakon
due to the scarcity and poor quality of the actdata hydroclimate predictions, future efforts will bevdged to
driving the GRDC analysis, including discharge, the refinement of land surface initial conditioresg(, soil
precipitation, and temperature, in the mountaingson. moisture, snow and groundwater) which contain @erta
As discussed above, the CFS has wet bias for piztogm memory, and the optimized ensemble forecast (L&tray.
over the North Rockies and southeastern Canada 3fig  2007) based on multiple physical options in CWRF.
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Figure 5. JFM mean results for sensible heat (SH, ¥y/datent heat (LH, W/R), total runoff (mm/day) and snow water
equivalent (SWC, mm) from reanalysis (NARR, GRD@ &MC), CFS and CWRF.
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