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1. Introduction layer and tropopause. The model was run using the
Global version of WRF. There are three domains
Temperature and rainfall frequency are keywhich correspond to the entire globe at®t15%’,
environmental parameters affecting the spread okntire U.S. at 0%0.5°, and the Central U.S. at
plant diseases during the growing season. For the.17x0.17, respectively. This presentation focuses
past years, we have used WRF to generate meagh the U.S. domain.
monthly weather forecasts for plant disease models.
Monthly averages are crucial to agricultural diseas Model simulations were initiated at weekly
forecasts. Short range weather forecasts argntervals and integrated for 31 days. The GFS
traditionally identified as initial value problems, (Global Forecast System) analysis was used for
while long-range climate forecasts of meaninitial conditions. Since our main goal was to
quantities are considered to be boundary valugliagnostic atmospheric predictability at the
problems. However, the sub-seasonal scale liesubseasonal time scale using the global version of
between the short range and climate scale an@vRF, which is not coupled with the ocean, we used
therefore sub-seasonal forecasts could depend ofixed sea surface temperature (SST) during the
both initial conditions and boundary values. In course of the 31-day integration. The fixed SST
terms of forecast products, the predictability onlimits the source of atmospheric variability to
sub-seasonal scales needs to be well quantifiedncoupled models. Nevertheless, we do not expect
before current generation of forecast models canarge SST variations over one month period.
reliably used to drive plant disease models. Our
research attempts to assess the predictability and
accuracy of the global WRF model in forecasting 3. Preliminary results
precipitation frequency and surface temperature at
monthly time scale. Our goal is to classify the we produced 18 monthly forecasts each beginning
monthly forecasts as either primarily initial value at different weeks, consecutively. Each of the 18
problems or boundary value problems, if possible. forecasts was compared to observations. We
focused on air temperature, rainfall amount and
rainfall frequency.
2. WRF model setup
3.1 Temperature
The WRF used for this work is version 3.1 with
default configurations for model physics and Figure. 1 shows that all of the monthly temperature
vertical resolution $kamarock et al. 2008) The  forecasts have a systematic cold bias. The mean
key physics parameter schemes include Kaintemperature of the 18 forecasts wa8ClWhile that
Fritsch (new Eta) for cumulus parameterization,of observed was 20C. Figure.1 (b) shows the
SYU for boundary-layer physics, WSM 3-class deviation of the forecast and observed plots from
simple ice for cloud microphysics, Dudhia (RRMT) their respective mean over the 18 monthly periods.
for radiation, Monin-Obukhov for atmospheric
surface layer, and thermal diffusivity for the land
surface processes. The model atmosphere is 31
layers with finer resolution within the boundary
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Fig. 1 Comparison of forecasted and
observed temperature for the central U.S.
for different weeks. The temperature are
spatial averaged over the region bounded

by BO_SGN and 100_8&N. 120°W 110°W 100°W 20°W 80°W T0"W
(a) mean temperature and (b) deviation of ) TEw aizm 09

the forecasted and observed from each of .,

their respective means over 18 forecasts. Fig. 2 Comparison of observed and

forecast surface temperature for the first
week( 5/7/09 to 6/7/09). (a) observed
temperature. (b) forecasted temperature.

Interestingly, there is a systematic and fairly
constant bias in the model forecasts amongst the 18 ) .
differents runs suggesting that the monthly mean isl he spatially averaged temperature difference
fairly insensitive to the initial value. However, between (a) and (b) is abodC3with forecast
while the observed temperature decreased ifemperature being lower. (Fig. 2)

August, the forecasted temperature exhibited the

opposite trend, increasing with the peak on th& 13

forecast (Fig. 3) during the same time period.
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Fig. 3 Comparison of the observed and
forecast surface temperature for th&' 13
week (8/6/09 to 9/5/09).
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Fig. 4 Comparison of averaged forecasted
and observed rainfall.

Heavy rainfall occurred over agricultural
regions during the growing season. The
deviation between averaged forecasted and
observed rainfall amount is about -10mm.
Heavier rainfall locations forecasted by the
WRF model were located to the southeast of

The averaged forecasted temperature achievedobserved results. (Fig. 4)

its peak value around 1. The averaged
observed temperature was’@2 (Fig. 3)

3.2 Rainfall amount

Spatial averaged rainfall amounts (Fig. 4) were
over predicted by the model during growing season.

However, daily precipitation rates were over
predicted during light rain events. (Fig. 5) and

under predicted during heavy events (Fig. 6).
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Fig. 5 Comparison of observed and Fig. 6 Comparison of observed and

forecasted mean precipitation rate (7/30/09 | forecasted mean precipitation rate from

to 8/30/09). (a) observed precipitation 6/4/09 to 7/5/09. (a) observed precipitation

amount. (b) WRF forecasted amount. amount. (b)WRF forecasted amount.
During this forecast time period, most During this forecast time period, agricultural
agricultural regions received light rainfall, less regions received plentiful rainfall. Forecasted
than 4mm/day. However total forecasted precipitation was less than observed by an

rainfall was more than observed rainfall. (Fig. average of 6mm/day. (Fig. 6)
5)



3.3 Rainfall frequency regions were reliable. The averaged bias
between forecasted and observed frequency
The number of rainfall days provided information a5 |ess than one day. (Fig. 7)
about rainfall frequency which is crucial duringth
growing season. Figure. 7 shows the rainfall days
during the 31-period averaged over 18 forecasts,
The predicted number of rainy days had a positive
bias which is probably caused by the model

. Summary and Discussions

Accurately forecasting weather at the subseasonal

drizzle” effect, which IS well documented. scale is crucial to producing accurate disease
Therefore, a careful selection of cutoff rainfadlyd forecast

amount can increase the accuracy of rainy day

frequency noticeably. The month-long temperature mean forecasts

exhibited a systematic cold bias when started from
different initial conditions. This suggests that th
mean monthly temperature using the global WRF
over the small domain is relatively insensitive to
initial conditions. Although, this does not
conclusively demonstrate that sub seasonal
forecasts of mean temperature over the Midwest are
boundary value problems, it does provide
compelling evidence.

The WRF model over-predicted the precipitation
amount and frequency except when the
precipitation was heavy. This may be caused by
model “drizzle " effect which is a common problem

in modeling precipitation. These results did not
deviate greatly from typical precipitation modeling

results.

Since sub seasonal forecasts may depend on both
initial conditions and boundary values, identifying
which factor these forecasts are more sensitive to
become an important problem for sub seasonal
forecasts. For future study, two types of
comparison experiments will be considered. We
will produce forecasts in a small domain embedded
in the global WRF model driven by initial data as
well as forecasts for a small domain driven latgral

; by boundary data. Comparing the results of these
e . runs to th_e_ qbserved data we will be able to i(_ﬂg?r?ti
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Fig. 7 Comparison of the averaged numbegrs conditions in the context of the global WRF model.
of forecasted and observed rainfall days for Also, we plan to extend forecast periods to several
each 31 dav. months to allow for more robust predictability
studies in temperature and perhaps look at the
sensitivity of monthly precipitation to initial dags
well. Our goal is to determine what sort of model
configuration is best suited to producing

The higher forecasted frequency was located
over the northern agricultural regions, although
the forecast results for most agricultural



sufficiently accurate sub seasonal forecasts fer us
in disease spread models.
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