Interaction of cloud microphysics with other physical processes

: Based on the work with WSM scheme

Song-You Hong (YonSei Univ., Seoul, Korea)

List of presentation

Overview of the WRF Single-Moment Microphysics

Importance of cloud ice sedimentation

Sedimentation versus microphysics

Cloudiness versus microphysics

Microphysics in regional and global models

WSMMP: WRF-Single Moment-Microphysics

	(Rutledge and Hobbs, 1983, NCEP3, D89)	(Hong et al, 2004)
Number		
concentration of	$N_I(m^{-3}) = 10^{-2} \exp[0.6(T_0 - T)]$	$N_I = c(\rho q_I)^d$
cloud ice		
lce nuclei	$N(m^{-3}) = 10^{-2} \exp[0.6(T - T)]$	$N = 10^3 \exp[0.1(T - T)]$
number	$N_{I}(m) = 10 \exp[0.0(T_{0} - T)]$	$N_{I0} = 10 \exp[0.1(T_0 - T)]$
Intercept		
parameter for	$N_{0S} = 2 \times 10^7 \text{ m}^{-4}$	$N_{0S}(m^{-4}) = 2 \times 10^6 \exp\{0.12(T_0 - T)\}$
snow		

Problematic behavior of Fletcher function :

- completely removes supersaturation below -42.5C and does not above -38.5
- autoconversion from ice to snow is efficient at warmer than -27C, but not colder than -32 C.

→ production terms are temperature dependent → distributions of qi and qs are highly have little freedom in vertical

Ice crystal property (Mass, Diameter, Mixing ratio, Ice number)

 $V_{I}(ms^{-1}) = 3.29(\rho q_{I})^{0.16}$: Heymsfield and Donner(1990) (HD1990) $V_I = xD^y, m = \alpha D^{\beta}$: Heymsfield and laquinta (2000) (HI2000) $mN_i = \rho q_i$ $V_I(ms^{-1}) = 1.49 \times 10^4 D^{1.31},$ $D(m) = 11.9m^{0.5}$ $N_{I}(m^{-3}) = 5.38 \times 10^{7} (\rho q_{i})^{0.75}$ $\rho q_{I}(kgm^{-3}) = 4.92 \times 10^{-11} N_{I}^{-1.33}$ $N_{i} = c \left(\rho q_{i}\right)^{d}$

Ice number concentration (Ni)

$$N_{I}(m^{-3}) = 5.38 \times 10^{7} (\rho q_{I})^{0.75} = N_{I}(m^{-3}) = 10^{-2} \exp[0.6(T_{0} - T)]$$

HDC2004

Fletcher

Observed Ni

Little temperature dependency of Ni

Vapor deposition of a small ice crystal (Pidep):

$$Pidep = \frac{4\bar{D}_{I}(S_{I}-1)N_{I}}{A_{I}+B_{I}} = \frac{4\bar{D}_{Icon}(S_{I}-1)(\rho q_{I}N_{I})^{0.5}}{A_{I}+B_{I}}$$

Even if the same formula, the actual behavior of production terms in the WSMMPs are quite different

Ice deposition should be more active at warmer temperature in nature

Hong et al. 2004

WSMMP (WRF-Single-Moment- MicroPhysics) Hong, Dudhia and Chen (2004)

23 –25 June 1997 Heavy Rainfall Case (Vertically integrated cloud ice)

Microphysics – radiation interaction

Yonsei University

Numerical Modeling Laboratory

Ice cloud - radiation feedback : (HDC2004)

cloud - radiation feedback (HDC2004)

Revised microphysics, together with the inclusion of ice sedimentation, improve the simulation of precipitation and large-scale features through ice-cloud radiation feedback

Ice microphysics versus ice sedimentation

- Lim and Hong (2005, J. Geophys. Res.)

MM5 Results - case dependency

Case1

Banded type local convection→ Microphysics is important

Frontal type heavy rainfall→ Ice sedimentation is important

MM5 Regional Climate Run

Remarks on cloud ice sedimentation

Importance of microphysics is case-dependent

Sedimentation of cloud ice is important in longterm integration Effect of sedimentation velocity and WSMMPs - what is the major source for the different behaviors between the PLIN and WSM6 schemes ?

> Hong, Lim, Kim, Lim, and Dudhia (2008, J. Appl. Meteor. and Clim.)

Different terminal velocity

Hong et al. (2008)

WSM6 : WSM6 scheme PLIN : PLIN scheme WSM6_Vg : WSM6 scheme but with PLIN Vg PLIN_Vg : PLIN scheme but with WSM6 Vg

One can tell the importance of microphysics or sedimentation of graupel between the PLIN and WSM6 schemes

WSM6_ vg and PLIN_vg experiments identify that the evolution of surface precipitation are significantly affected by the magnitude of sedimentation of graupel

Hong et al. (2008)

Effect of different terminal velocity in real case simulation

Changes of the environment due to :

Numerical Modeling Laboratory

Interaction between the ice clouds and radiation

The WSM6_nora shifts the major precipitation band northward, which is similar to that in the PLIN.

Hong et al. (2008)

Remarks on Vg and ice microphysics

- A reason for the different effect of the terminal velocity of graupel between the 2D and 3D runs can be deduced from the modulation of thermodynamic environments, rather than the sedimentation velocity.
- The more stabilized structure within the entire troposphere in the WSM6 scheme due to the WSMMPs plays a dominant role of the distribution of precipitation

Hong et al. (2008)

A further consideration on the sedimentation of snow and graupel

A new method for representing mixed-phase particle fall speeds in the WSM6

Dudhia, Hong and Lim (2008, J. Meteor. Soc. Japan)

A new unified mass weighted terminal velocities

for snow and graupel

The new Vgs avoid the problem of the species separating out by sedimentation as graupel forms, and the further problem of graupel then accreting snow too quickly because of its higher relative fallspeed.

Instead the unified graupel/snow moves together and evolves in its relative ratio due to riming, behaving as intermediate or partially rimed particles.

It shows promise in improving precipitation intensity and precipitation type forecasts

Flowchart of the microphysics processes in the WSM6

• comparison indicates the changing terms caused by new velocities of graupel and snow

Heavy rainfall over Korea during 14-15 July 2001

: Time averaged vertical profiles of hydrometeor

Reduced graupel and increased snow is distinct in the WSM6_Vgs.

Heavy rainfall over Korea during 14-15 July 2001

: Scatter plot of Qg versus Qs

These show that the graupel and snow change from uncorrelated fields to correlated ones because of their unified fall speeds

Heavy snowfall over Korea during 3-5 March 2004

: Accumulated precipitation

similar pattern in the distribution of precipitation, however more snow amount in the WSM6_Vgs

Remarks on Vs and Vg

- This scheme is designed to alleviate the effects of the separation of precipitating ice particles into distinct rimed graupel and unrimed snow categories with clearly defined properties and fallspeeds.
- A systematic underestimation of snow and overestimation of graupel in the WSM6 that was indicated by the previous studies (e.g., Lin et al. 2006, Tao et al. 2008) is expected to be alleviated by the introduction of the new falling velocity.

Numerical accuracy of sedimentation

Forward semi-Lagrangian mass conservation positive definiteness advection for falling precipitation

Hann-Ming Henry Juang[,] Song-You Hong

MWR (2010, May issue)

Non-iteration semi-Lagrangian (NISL) scheme

ii) Introduce deCFL

$$Q_{A}(k) \gg Q_{A}(k-1)$$

$$w^{+} \gg w^{-}$$

$$\Delta_{A} < 0$$

$$deCFL = \left(w^{+} - w^{-}\right) \frac{\Delta t}{\Delta_{D}} > 1$$

$$Modify \quad w^{-} = w^{+} - c \frac{\Delta_{D}}{\Delta t}$$

Numerical Modeling

with c < 1

Numerical Modeling Laboratory

WSM3 implementation : 1D case

Squall-2D experiments

Hydrometeors Fields PCM CTI PLM **CTL and** lce/Cloud lce/Cloud Ice/Cloud **PCL** are similar. PLM and PPM are Height (km) Height (km) [®] ⁰¹ ⁷¹ (ku) 12 similar. Height ... **PLM** 60 produces a -25 -20 -15 -10 20 -25 -20 -15 -25 -20 -15 -10 -5 5 10 15 15 -5 15 20 25 5 10 25 X-direction (km) X-direction (km) X-direction (km) mammatus-Snow/Rain Snow/Rain Snow/Rain like features beneath the CRS anvil clouds. 14 Height (km) Height (km) Height (km) -15 -25 -20 -10 15 20 25 -25 -20 -15 -10 20 -25 -20 20 -15 -10 -5 15 25 X-direction (km) X-direction (km) X-direction (km)

Numerical Modeling Laboratory

Remarks on the accuracy of sedimentation

The erroneous sedimentation code has been running without much attention

→ Surface precipitation for a certain time period is not that strange
Microphysics (precipitation process) – cloudiness - radiation

Overview of radiation parameterization

- * Radiational forcing : $Q_a = Q_{as} + Q_{ae}$
- - Q_{as}: based on radiative transfer theory & depend on the known vertical distribution of absorbing or emitting gases such as
 H₂O, CO₂, O₂, O₃ and also consider the effects of scattering by atmospheric molecules and aerosols and reflection by clouds.
 - Q_{ae} : based on radiative transfer theory and the known absorptivity of atmospheric constituents and the vertical distribution of temperature.
 Radiatively active gases are H₂O, CO₂, O₃, CH₄, CO, CFC.
 Both upward and downward fluxes are involved.
 - \rightarrow Handling cloud effects is much more complicated than SW.

2) Solar radiative transfer

- At TOA,

$$F = S(\frac{dm}{d})^2 \cos \theta_0 \quad (\theta_0 : \text{Zenith angle}) \qquad \mu = \cos \theta$$
(Insolation)

- Basic equations

$$\mu \frac{dI(\tau, \mu, \phi)}{d\tau} = I(\tau, \mu, \phi) - J(\tau, \mu, \phi)$$

absorption source emission

$$\tau \text{(optical depth)} = \int_{z}^{z_{\infty}} k_{v}(z') \rho_{a}(z') dz'$$
$$= \int_{0}^{p} k_{v}(p') q(p') \frac{dp'}{g}$$

$$J = J(\tau, \mu, \phi) = \frac{\tilde{\omega}}{4\pi} \int_0^{2\pi} \int_{-1}^1 I(\tau, \mu', \phi') P(\mu, \phi; \mu', \phi') d\mu' d\phi [\text{diffuse (multiple) scattering}]$$

+ $\frac{\tilde{\omega}}{4\pi} F_0 P(\mu, \phi; -\mu_0, \phi_0) e^{-\frac{\tau}{\mu_0}} [\text{single(direct) scattering}]$

$$\begin{pmatrix} P: \text{Scattering phase function : redirects} & (\mu', \phi') \rightarrow (\mu, \phi) \\ \tilde{\omega} = \frac{\sigma_s}{\sigma_e}: \text{Scattering albedo} \\ \text{scattering cross section/extinction(scattering + absorption) cross section} \end{cases}$$

- * remove ϕ dependency using $P(\cos \theta)$ function
- * *P*, $\tilde{\omega}$, Albedo depend on λ , particle size & shape.

$$P(\cos\phi) = \sum_{l=0}^{N} \tilde{\omega}_{l} P_{l}(\cos\phi)$$
 : Legendre Polynomial

$$\mu \frac{dI(\tau,\mu)}{d\tau} = I(\tau,\mu) - \frac{\tilde{\omega}}{2} \sum_{l=0}^{N} \tilde{\omega}_{l} P_{l}(\mu) \int_{-1}^{1} P_{l}(\mu') I(\tau,\mu') d\mu' - \frac{\tilde{\omega}}{4\pi} \sum_{l=0}^{N} \tilde{\omega}_{l} P_{l}(\mu) P_{l}(-\mu_{0}) F_{0} e^{-\frac{\tau}{\mu_{0}}}$$

 \rightarrow The azimuth-independent phase function gives,

$$\mu \frac{dI(\tau,\mu)}{d\tau} = I(\tau,\mu) - \frac{\tilde{\omega}}{2} \int_{-1}^{1} I(\tau,\mu') P(\mu,\mu') d\mu' - \frac{\tilde{\omega}}{4\pi} P(\mu,-\mu_0) F_0 e^{-\frac{\tau}{\mu_0}}$$

The monochromatic upward and downward diffusion fluxes at a given . au

$$F_{diff}^{\pm}(\tau) = \int_{0}^{2\pi} \int_{0}^{\pm 1} I(\tau, \mu, \phi) \mu d \, \mu d \, \phi$$

The direct downward solar flux at level . au

$$F_{dir}^{-}(\tau) = \mu_0 F_0 e^{-\frac{\tau}{\mu_0}}$$
; exponential attenuation

The net flux : $F_s(z) = F^-(z) - F^+(z)$ Direct#diffuse

$$\left(\frac{\partial T}{\partial t}\right)_{s} = \frac{1}{\rho c_{P}} \frac{dF_{s}(z)}{dz} = \frac{g}{c_{P}} \frac{\Delta F_{\lambda}(P)}{\Delta P} = -\frac{g}{c_{P}} \frac{\Delta F_{\lambda}(u)}{\Delta u}$$
$$\left(\frac{\partial T}{\partial t}\right)_{total} = \sum_{s=1}^{N} \left(\frac{\partial T}{\partial t}\right)_{s}$$

Radiative transfer equation solver.

\rightarrow

Discrete - ordinates method Two - Stream and Eddington's approximation Delta - function adjustment and similarity principle δ - Four stream approximation

3) Terresterial radiation

In spectral bands (monochromatic)

$$\uparrow \quad \mu \frac{dI_{\nu}(\tau,\mu)}{d\tau} = I_{\nu}(\tau,\mu) - B_{\nu}(T) \\ \downarrow \quad -\mu \frac{dI_{\nu}(\tau,-\mu)}{d\tau} = I_{\nu}(\tau,-\mu) - B_{\nu}(T) \\ B.C. \quad \begin{cases} SFC \ (\tau = \tau_{1}), \ I_{\nu}(\tau,\mu) = B_{\nu}(T_{s}) \\ TOP \ (\tau = 0), \ I_{\nu}(0,-\mu) = 0 \end{cases}$$

$$F^{\uparrow}(\tau) = 2\pi B_{\nu}(T_{s}) \int_{0}^{1} e^{-\frac{(\tau_{1}-\tau)}{\mu}} \mu d\mu + 2\int_{0}^{1} \int_{\tau}^{\tau_{1}} \pi B_{\nu}[T(\tau')] e^{-\frac{(\tau'-\tau)}{\mu}} d\tau' d\mu$$
$$F^{\downarrow}(\tau) = 2\int_{0}^{1} \int_{0}^{\tau} \pi B_{\nu}[T(\tau')] e^{-\frac{(\tau-\tau')}{\mu}} d\tau' d\mu$$

 $d\tau = -k_{\nu}\rho dz$

$$\tau_1 = \int_0^{u_1} k_v du, \quad u_1 = \int_0^\infty \rho dz$$

4) Cloud fraction

A. Conventional method

$$f = f_c (convective, cumulus - paramet) + f_l (l \arg escale, microphysics)$$

$$f_c : \text{ depends on precipitation, } p_{\text{top, }} p_{\text{bottom}}$$

$$f_l : \text{ depends on } \text{RH} = 1 - \left[\frac{1 - RH}{1 - RH_0}\right]^{0.5}$$
where RH_0 is the critical value of RH which is optimized based on observations. (Slingo's method)

- consistent treatment of water substance for both precipitation & radiative properties.
- f_c : uses information of detrained water substances from sub-grid scale clouds in convective parameterizations

i) with diagnostic microphysics (CCM3)

- cloud water scale height r_l

$$h_1 = a \ln(1.0 + \frac{b}{g} \int_{P_T}^{P_s} q dp)$$

- cloud droplet size,

$$r_{ee} \begin{cases} =10 \mu m \quad \text{over ocean} \\ <10 \mu m \quad \text{over land} \\ \cdots \text{ warm cloud} \\ r_{ei}: 10 \mu m \sim 30 \mu m \quad f_{ice}: \text{ ice fraction } 0 \\ (\text{low}) \quad (\text{high}) \\ \cdots \text{ ice cloud} \end{cases} f_{ice} = 10 \mu m \sim 10 \mu m^{-30} \text{ mm}^{-10} \text{$$

 \uparrow

- The radiation properties of ice cloud in the short wave spectral region :

$$\tau_i^c = cwp[a_i + \frac{b_i}{r_{ei}}] f_{ice} \text{ (optical thickness)}$$

$$w_i^c = 1 - c_i - d(r_{ei}) \text{ (co-albedo)}$$

$$g_i^c = e_i - f(r_{ei}) \text{ (asymmetry factor)}$$

$$f_i^c = (g_i)^2$$

a-f : coeff : depends upon band and k-

 $\overline{\tau_c} = \sum_i \tau_i$ *i* : each gas (The effective optical thickness for each spectral band) - The long wave cloud emissivity (E_{cld})

$$c_{f}' = E_{cld}c_{f}$$

$$E_{cld} = 1 - e^{-Dk_{abc}cwp}$$

$$X D = 1.66 \qquad : diffusivity factor$$

$$k_{abc} : LW absorptivity coefficient.$$

$$=k_{l}(1 - f_{ice}) + k_{i}f_{ice}$$

ii) with prognostic microphysics (MM5, WRF ?)

 α_p (absorption coefficient)

$$=\frac{1.66}{2000}\left(\frac{\pi N_0}{\rho_{rs}^3}\right)^{\frac{1}{4}} \quad m^2 g^{-1} = \begin{bmatrix} 2.34 \times 10^{-3} & m^2 g^{-1} & \text{for snow} \\ 0.33 \times 10^{-3} & m^2 g^{-1} & \text{for rain} \end{bmatrix}$$

 u_p (effective water path length)

-

$$= (\rho q_{rs})^{\frac{3}{4}} \Delta z \times 1000 \quad gm^{-2} \quad \rightarrow \tau_p \text{(transmission)} = \exp(-\alpha_p u_p)$$

c) Cloud overlapping

Ice-cloud radiation interaction in GCM

WSM1 (diagnostic) → WSM3 (prognostic)

- 1. saturate vapor pressure respect to the water of ice phase
- 2. increased number of hydrometeors
- 3. fractional cloudiness
- 4. ice-cloud in radiation
- 5. inclusion of detrainment of cloud water from the convective cloud

Hong et al.

(2010, Asia-Pacific J. Atmos. Sci.)

Global/Regional Integrated Model system (GRIMs): Hong et al. (2010, in preparation)

Dynamics	Spherical Harmonics : Juang (2005), Kanamitsu et al. (2002) Double Fourier Spectral : Cheong (2006), Park et al. (2008, 2010)					
Physics version	GRIMS-phys1 (R2)	GRIMS-phys2	GRIMS-phys3	GRIMS-phys4	GRIMS-phys5	
Radiation	SW : 1-Albedo LW : GFDL	NEWALB: SW : 4 Chou ai	-Albedo (GSFC) (Cho nd Lee 2005; Ham et	SW : GSFC. LW: RRTMGWRF		
SFC	M-O similarity Hong and Pan (1996)	+ Z0t and Vsfc Seol and Hong (2006)	+ WRF OML (Pollard) +Diurnal SST (Zeng and Beljaars) Kim and Hong (2010)	+ Revised Ch, Cm Kim and Hong (2010), Donlean et al. (2004		
LSM	OSU1 Mahrt and Pan (1985)	OSU2 Kang and Hong (2008)	NOAH + Seol et al. (2010), Chen and Dudhia (2001)			
PBL	MRF Hong and Pan (1996)	YSU Hong et al. (2006)	YSU + stable BL: Hong (2010)			
GWDO	Alpert et al.(1989) Kim		Kim and A	d Arakawa (1995), Hong et al. (2008)		
GWDC	x		Chun and Baik (1998), Jeon et al. (2010)			
Deep Convection	SAS (Hong and Pan 1998, Park and Hong 2007)			SAS Byun and Hong (2007)		
Shallow convection	Tiedke (1989)			SAS : Han and Pan (2007)		
Micro Physics	WSM1 : Hong et al (1998)				WSM3 Hong et al. (2004)	
Cloudiness	Implicit : Hong et al. (1998)				Explicit	
Chemistry	Diagnostic			Prognostic ozone		

Physics Development Strategy

Resolution: grid size from 200 m to T62 (200 km)

Model: GRIMSs (SCM, GSM, RSM), and WRF

Single column Model : Direct impact of the new physics		
	TOGA COARE, ARM, etc.	
Regional NWP	: Impact on daily forecast	
	14-15 July 2001, 23-25 June 1997 heavy rainfall	
Regional climate	: RCM with reanalysis boundary condition	
	JJA 2002, 2003 East-Asian monsoon, 25-yr climatology	
Global NWP	: heavy rainfall events, GSM with reanalysis initial data	
	January 2006, July 2006	
Seasonal simulation : Stability of the scheme, tropical precipitation		
1996, 1997, 1999 summer and winter , AMIP run		

Runtime comparison (T214, MPI)

• Wave transpose and load imbalance by computation cost affect on MPI efficiency

- T214/L42 (648 x 324)
- 24 hour prediction
- 32 PE (4 nodes with 8 cups) in 2D decomposition
- Dual core Opteron 2.4GHz CPU
- PGI FORTRAN compiler with same compiler options
- SPH Dynamics costs more than DFS by about 200% computation for T214

Experimental design

Summary of experiments

CNTR	Diagnostic cloud (RA2 microphysics)
PRGC	Prognostic ^q ci and ^q rs
CLDN	Same as the PRGC, except for the inclusion of hydrometer in cloudiness (Xu and Randall)
ICER	Same as the CLDN, except for the inclusion of ice properties in radiation
DETC	Same as the ICER, except for the inclusion of detrainment of cloud water from the convective cloud

Hong et al. (2010)

Microphysics Scheme (number of prgnostic water substane)

WSM1 (diagnostic) : qv Hong et al. 1998, 2004
WSM3 (prognostic) : qv, qc/qi, qr/qs
Fractional cloudiness
Slingo 1987 : CNTR, PRGC
Xu and Randall 1996 : CLDN, ICER, DETC
Microphysics effect : CNTR & PRGC
Cloudiness effect : PRGC & CLDN
Ice-cloud effect : CLDN & ICER
Detrainment effect : ICER & DETC

Fraction Cloudiness in model

Slingo 1987 : CNTR, PRGC

Hong et al. (2010)

Xu and Randall 1996 : CLDN, ICER, DETC

WSM1: Slingo (1987) :
 RA2 formula

$$C_{f} = 1 - [\frac{1 - RH}{1 - RH_{0}}]^{0.5}$$

 RH_0 : critical value of relative humidity (depends upon the height of clouds)

It can be high even when cloud/ice water does not exist !

WSM3: Xu and Randall (1996) : GFS formula

 \boldsymbol{q}_t : the mixing ratio for total liquid species

It effectively reduces the cloud fraction in cold clouds where cloud ice is small !

Single column model

Results

* Precipitation

Hong et al. (2010)

EXP	Total rain (A)	Large-scale rain (B)	Correlation coefficient
TOGA	23.9	-	-
CNTR	23.5	0.7	0.77
PRGC	21.4	0.3	0.70
CLDN	21.6	0.2	0.75
ICER	21.7	0.1	0.71
DETC	21.8	0.1	0.71

Underestimation of rainfall

The experiments using the WSM3 scheme : decrease of the large-scale precipitation

CNTR : the best correlation coefficient

Temp. & RH

100

200

300

(p 400 d 4 500

600 Pressure 700 Dress

800

900

1000 +

100

200

300

(pd400 dq) 500

essure

َ 1 700

800

900

1000 |__ _0.8

-ò.4

0

-4

(c)

-2

CNTR: cold and moist DETC: warm and moist (200-500 hPa) cold (550-800 hPa)

Microphysical effect : cooling (low), warming (upper) Ice-cloud effect : warming and moistening (upper) Cloudiness, detrainment effect : not dominant

Hong et al. (2010)

Seasonal simulation

Results

Hong et al. (2010) Precipitation Total cloud amount

Hong et al. (2010)

Temp. & RH (difference from RA2)

CNTR-RA2

Hong et al. (2010)

Microphysical effect:

moistening in the upper troposphere

WSM3: complex physics

Hong et al. 1998, 2004

Cloudiness effect:

not significant

Grabowski 2003

Xu and Krueger 1991

Ice-cloud effect:

cooling and moistening in the troposphere

warming and drying in the stratosphere

Ping et al. 2007

Detrainment effect:

Cooling and moistening in the upper troposphere

Comparison of Four Cloud Schemes in Simulating the Seasonal Mean for AMIP Type Integrations

Akihiko Shimpo^{*1}, Masao Kanamitsu^{*1}

Sam Iacoballis, and Song-You Hong*2

Monthly Weather Review (2008)

Contents

- Introduction
- Objective
- Tested cloud schemes
- Comparison and validation of cloud schemes with ISCCP, E RBE, GPCP observations and R-2 reanalysis.
- Suggest possible revision to cloud parameterization.
- Conclusion

Objectives

- Compare cloud water prediction schemes and cloudiness parameterizations in Global model.
- Focus on stratiform clouds
- Validate simulations with observational data.
- Examine DJF, JJA seasonal mean (10 year average)

Cloud schemes in ECPC G-RSM

	Cloud water prognostic variables(#)	Stratiform clouds	Convective clouds	Boundary layer clouds	effici- ency
CNTL	None (0)	Diagnosed from RH (SS91)	Diagnosed	Diagnosed from inversion strength and RH	100%
ZC	qc/qi (1)	Diagnosed from RH and cloud water content (R95)	convective precipitation (SS91)		110%
HONG	qc/qi, qr/qs (2)				240%
IS	qc/qi (1)	Predicted (IS)		(5591)	150%

qc : cloud water, qi : cloud ice qr : rain, qs : snow

• Efficiency : (HONG5)340%, (HONG6)510%

Cloud scheme (1) : CNTL

• No cloud water prediction

• Precipitation

 Supersaturation is removed instantaneously as a precipitation. Ev aporation occurs when precipitation falls through the unsaturated atmospheric layer.

Stratiform cloud amount

- diagnosed from RH (Slingo and Slingo, 1991)

$$C = \left(\frac{RH - RH_c}{1 - RH_c}\right)^2$$

• Used by ECPC SFM

Cloud scheme (2) : ZC

• Predict cloud water/ice mixing ratio (Zhao and Carr 1997)

$$\partial q_c / \partial t = A(q_c) + S_c + S_g - P - E_c + D_{qc}$$

 $A(q_c)$: horizontal advection of q_c

 $S_{c_r} S_{g_r}$: sources of q_c from convection and grid-scale condensation

P : precipitation production rate from cloud water/ice mixing ratio, evaporation of precipitation, melting snow process

 E_c : cloud evaporation rate D_{qc} : horizontal and vertical diffusion

Precipitation production

- Cloud water -> rain : Sundqvist et al. (1989)

 $P_{raut} = c_0 q_c \{1 - \exp[-(q_c/(q_{cr}b))^2]\}$

– Cloud ice -> snow : Lin et al. (1983)

 $P_{saut} = a_1 \left(q_c - q_{ci0} \right)$

Difference between ECPC and NCEP ZC scheme

- Cloud water/ice predictive equation
 - Critical value of autoconversion from cloud ice to snow (kg/kg)

$$P_{saut} = a_1 \left(q_c - q_{ci0} \right)$$

NCEP : $q_{ci0} = 1.0e-5x(0.01xP)$ P(cbar)

ECPC : $q_{ci0} = 5.0e-6$

 \rightarrow values in NCEP and ECPC are the same at 500 hPa

Cloud amount

- Based on Xu and Randall (1996) for NCEP

NCEP
$$C = \max \left[R^{0.25} \right] (1 - 1)^{1/2}$$

$$\exp\left\{-\frac{2000 \times (q_{c} - q_{c\min})}{\min\left[\max\left[\left((1 - R)q^{*}\right]^{0.25}, 0.0001\right), 1.0\right]}\right\}\right\}, 0.0$$

ECPC
$$C = RH \left[1 - \exp\left(\frac{-\alpha \cdot m}{1 - RH}\right) \right]$$

Cloud scheme (3) : IS

• Predict cloud water/ice mixing ratio (Tiedtke 1993; Iacobellis and Somerville 2000)

$$\partial q_c / \partial t = A(q_c) + S_c + S_{BL} + S_g - P - E_c - ENT + D_{qc}$$

 S_{BL} : sources of q_c from boundary-layer turbulence ENT: flux divergence due to entrainment processes at the top of stratocumulus clouds

Precipitation production

Cloud water / ice -> rain / snow (Sundqvist et al. 1989)

 $P_{raut} = c_0 q_c \{1 - \exp[-(q_c/(q_{cr}b))^2]\}$

Predict cloud amount

 $\partial C/\partial t = A(C) + S(C)_c + S(C)_{BL} + S(C)_g - D(C)$

Used in Scripps SCM, and ECMWF

Cloud scheme (4) : HONG

 Predict cloud water/ice mixing ratio and rain/snow mi xing ratio (Dudhia 1989, Hong et al. 1998, 2004)

$$\frac{\partial q_c}{\partial t} = A(q_c) + F(q_c) + D_{qc}$$

$$\frac{\partial q_r}{\partial t} = A(q_r) + F(q_r) + D_{qr} - P$$

 $A(q_c)$, $A(q_r)$: horizontal and vertical advection of q_c and q_c

- $F(q_c)$, $F(q_r)$: microphysical processes
- *P*: precipitation production rate, *D*: horizontal and vertical diffusion
- The microphysical processes in the scheme contain condensation of water vapor into cloud w ater (ice) at saturation, accretion of cloud by rain (ice by snow), evaporation (sublimation) of r ain (snow), initiation of ice crystals, and sublimation or deposition of ice crystals

Precipitation

Cloud water -> rain : Kessler (1969)

$$P_{raut} = a \rho (q_c - q_{c0})$$

– Cloud ice -> snow :

$$P_{saut} = \rho(q_i - q_{imax}) / \Delta t$$

Cloud scheme (4) : HONG

• Stratiform cloud amount

- diagnosed from RH and cloud water/ice mixing ratio

(Xu and Randall 1996) same as ZC

$$C = RH \left[1 - \exp\left(\frac{-\alpha \cdot m}{1 - RH}\right) \right]$$

 α : 1.0x10³ (same as in R95)

• Used by NCEP WRF/RSM

Experimental design

- ECPC G-RSM : Based on the NCEP Seasonal Forecast Model (SF M; Kanamitsu et al. 2002)
- GSM T62L28
- Initial time : 01/Jan/1989, 00Z
- Integration : 11 years (1989-1999), first year removed for validation.
- 1 member
- SST : interpolated daily from NCEP weekly analysis (Reynolds and S mith 1994)

Total cloud amount

DJF

- Underestimated in all schemes. CNTL is the s mallest. IS is closer to OBS than others.
- IS>HONG>CNTL,ZC

Summary of cloud amount comparison

- High cloud:
 - IS>CNTL, HONG>ZC. CNTL and HONG are better. IS overestimate s, ZC underestimates. Overestimation in IS is caused by neglecting falling cloud ice. Underestimation in ZC is caused by small value of autoconversion from cloud ice to snow.
 - Anvil in ZC, IS and HONG seems to be underestimated.
- Middle cloud
 - IS>CNTL, HONG>ZC. CNTL and HONG are better. IS is overestima ted, ZC is underestimated. All similar to high cloud.
- Low cloud
 - HONG, IS>ZC>CNTL. Using cloud water show larger cloud amount.
 - ZC is better in tropics over ocean.
- Total cloud
 - Underestimated in all. **IS** is closer to observation.

- IS: overestimated ,except for over land in NH mid latitude in DJF
- HONG: seasonal change is large. Sum>Win. Over estimation in summer hemisphere. Underes timated over land in NH in DJF like ZC.

Precipitation

DJF

60E 120E 180 120W 60W

180 120W 60W

180 120W 60W

10

12 14 16

[mm day⁻¹]

Ω

60E 120E

 $\overline{2}$

6

4

8

60

60N

60S

60N

30

ISCCP

(OBS)

CNTL

ZC

- 60S 60E 120E 180 120W 60W 60N IS 60S 120E 180 120W 60W 60E Double ITCZ problem is seen in all schemes. Overesti 60N 30N mation in TROPICS and winter hemisphere. HONG TROPICS: CNTL, ZC and HONG show similar precipit ation distribution. IS seems to be good over land. Over 309 ocean, contrast between ITCZ and SPCZ is better tha 60S n others.over land, also IS is good. 60E 120E
- HONG shows underestimation, especially over land.
- JJA is similar to DJF

٠

- Cold bias is common to all schemes in stratosphere.
- Warm bias is seen around troposphere, especially IS and ZC. This is related with the radiative propertie s calculated from cloud water content. In IS, it is warmer in summer hemisphere. It is interesting that war m bias is not strong in HONG, in which cloud water path is between ZC and IS. CNTL seems to be the best in 4 schemes. JJA pattern reverse between NH and SH.

Summary of comparisons

• Cloud water path:

- IS>HONG>ZC. ZC is the closest to observation.
- Seasonal change seen in HONG is large. Summer > Winter.

• Precipitation

- Overestimated in all schemes. Tendency to form double ITCZ in all.
- Over land, IS shows closer precipitation distribution to observation.
- HONG shows underestimation over land in mid latitudes.

• Temperature

- CNTL has smallest bias.
- Warm bias is seen around tropopause in IS. This seems to be related with a lot of cloud water in high latitudes.

Radiation fluxes at TOA

- OLR: Over ocean, overestimated most in ZC. Related with least high cloud amount. IS is closest to observation, however high cloud amount is overesti mated. Over land between 30S-EQ, CNTL high cloud amount is the best of all. Insufficient representation of anvil in other schemes.
- OSR: IS or HONG is the best. Total cloud amount which matches best with observation, is responsible.

Remarks

▲ Radiation is directly interacted by cloudiness which is most intimately interacted with precipitation physics. In other words, cloudiness associated with cloud-radiation interaction is affected by the precipitation physics as well as cloudiness parameterization.

▲ It has been found that implementation of the prognostic cloud scheme necessitates the improvement of the radiative transfer of both longwave and shortwave in the atmosphere.

For the use of WSM3, which is more realistic scheme than WSM1, new formula for cloud amount calculation is needed to have realistic representation of cloud-radiation interaction.

In other words, it is difficult to remove empirical tuning parameters in the diagnostic cloudiness formula

Re-examination of cloudiness parameterization

- Cloudiness is important for:
 - Model simulations using 4 cloud schemes showed TOA is sensitive to simulated cloud distributions.
 - Simulated cloud distribution closer to observation results in better radiation fluxes at TOA.

Re-examination of the cloudiness para meterization

- Examine relationships between relative humidity and cloudi ness, and cloud water and cloudiness in observation
- Observation used
 - ISCCP(D2): cloud amount, cloud water path
 - 3 levels : high/middle/low
 - NCEP/DOE reanalysis 2 (R2) : relative humidity
 - Maximum in each level

A proposed formulation of cloud amou nt using cloud water

- This formulation is similar to Randall (1995)'s formulation, but does not include the term associ ated with RH. To determine the constant *B*, ISCCP D1 data (6-hourly) is used.
- The accuracy of predicted cloud water distribution in the model becomes very important since cloud water is an only predictor in the proposed parameterization. Bias in cloud water may ha rm this scheme.

Microphysics versus cloudiness in WRF : short-range vs. long-range

Experiments

MPS	Cloud fraction (0 or 1)
MPS_CLD	Cloud fraction based on Xu and Randall 1996

MPS: WSM6/ WDM6/ PLIN

-Case:

1) climate run: Jang-ma season \rightarrow 2006.7-8 (1 month)

2)Short range forecast run: Heavy rain fall → 2006.7.15-16 (1day)

Accumulated rainfall 2006.7-8 (1 month)

TMPA

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

WSM6

50 100 150 200 250 300 350 400 450 500 550 600 650 800 750

WDM6

50 100 150 200 250 300 350 400 450 500 550 600 650 800 750

PLIN

50 100 150 200 250 300 350 400 450 500 550 600 650 800 750

WSM6_CLD

50 100 150 200 250 300 350 400 450 500 550 600 650 800 750

WDM6_CLD

50 100 150 200 250 300 350 400 450 500 550 600 650 800 750

PLIN_CLD

50 100 150 200 250 300 350 400 450 500 550 600 650 800 750

Standard Deviation

MPS	63.54
CLOUD FRACTION	62.09 (WSM6: 74.14,WDM6: 59.77,PLIN: 52.35)

Differences in accumulated rainfall 2006.7-8 (1 month)

WDM6-WSM6

-800 -400 -200 -100 -50 50 100 200 400 800

PLIN-WSM6

-800 -400 -200 -100 -50 50 100 200 400 800

WDM6_CLD-WDM6

WSM6_CLD-WSM6

-800 -400 -200 -100 -50 50 100 200 400 800

-800 -400 -200 -100 -50 50 100 200 400 800

PLIN_CLD-PLIN

Numerical Modeling Laboratory

-800 -400 -200 -100 -50 50 100 200 400 800

Differences in temperature

2006.7-8 (1 month)

WDM6-WSM6 100 -0.05 -0.15 225-200 300 400 Pressure (hPa) 500 600 · -0.05 700 800 900 1000 -20N 30N 40N 50N Latitude (deg)

PLIN-WSM6

WSM6_CLD-WSM6

100 200 -0.01 0.0 300 --0.05 0.05 400 Pressure (hPa) 500 600 700 -800 900 · 1000 3ÓN 20N 40N 50N Latitude (deg)

WDM6_CLD-WDM6

PLIN_CLD-PLIN

Accumulated rainfall 2006.7.15-16 (1day)

PLIN_CLD

20 40 60 80 100120140160180200220240260280300320340360380

130

20 40 60 80 100120140160180200220240260280300320340360380

Standard Deviation

35N

1258

20 40 60 80 1001 201401 601 80200220240260280300320340360380

MPS	8.28
CLOUD FRACTION	3.45 (WSM6: 3.77,WDM6: 3.08,PLIN: 3.50)

1308

Microphysics is important in Short-range forecast, whereas formula for cloudiness becomes important with time

Cloudiness effect in a simulated climatology

Experiments

GSFC_GRIMs	GSFC radiation in GRIMs (routed in GFDL scheme back to early1990)		
GSFC_WRF	GSFC in the WRF, which was implemented into the GRIMs		
GSFC_WRF_ CLD	Changing the cloud fraction from the WRF (0,1) to GRIMs (partial)		

-Case:

climate run: summer season →1997.6-8 (3 month, spin-up:1 month)

Numerical Modeling Laboratory

Accumulated rainfall : GRIMs T62 1997.6-8 (3 month)

		Global Mean	Pattern Correlation
-	GSFC_GRIM	104.2	0.73
	GSFC_WRF	106.4	0.64
	GSFC_WRF_CLD	110.8	0.67

Zonal Mean U winds

contour: zonal mean U wind

shaded: exp – RA2

GSFC_GRIMs

GSFC_WRF_CLD

Numerical Modeling Laboratory

Zonal Mean Temperature contour: zonal mean Temperature

GSFC_GRIMs

GSFC_WRF

GSFC_WRF_CLD

Numerical Modeling Laboratory

Remarks on cloudiness

RH, T, are synoptic observed variables Hydrometeors can be observed recently Cloudiness is difficult to measure Overlapping is also uncertain

Cloudiness is a muddy physics component, but becomes important for a longer integration, even at higher resolutions

Thanks~