CAPS Storm-Scale Ensemble Forecast (SSEF) in Support of NOAA HWT 2010 Spring Experiment

Fanyou Kong, Ming Xue, Kevin W. Thomas, Yunheng Wang, Keith Brewster, Jidong Gao, Xuguang Wang
(Center for Analysis and Prediction of Storms/U. of Oklahoma), Steven J. Weiss (NOAA/SPC),
Adam Clark, Jack Kain, Michael C. Coniglio (NOAA/NSSL), Jun Du (NOAA/NWS/NCEP)

11th WRF Users' Workshop, Boulder, CO - 24 June 2010

History of CAPS SSEF

- <u>Spring 2007:</u> 10-member WRF-ARW, 4 km, 33 h, 21Z start time, NAM+SREF ICs. 5 members physics perturbations only, 5 with Phy+IC+LBC perturbations. 2/3 CONUS (+ one single 2 km grid forecast)
- <u>Spring 2008:</u> 00Z start, Phy+IC+LBC pert for all members. Radar Vr and Z data assimilation, large domain - 3/4 CONUS (+ one single 2 km grid forecast, with radar DA)
- <u>Spring 2009:</u> 20 members, 4 km, 3 models (ARW, NMM, ARPS), physics/IC/LBCs. 3/4 CONUS (+ one single 1 km grid forecast, with radar DA)
- About 1.5 months each spring season from mid-April through early June

New Features in 2010

- Full CONUS domain (+38% computing)
- Total 26 members, at 4-km grid spacing: 19 <u>ARW</u>, 5 <u>NMM</u>, 2 <u>ARPS</u> members
- Upgrade to WRF version 3.1.1 from version 3.0.1.1
- New double moment microphysics (WDM6, Morrison, new-Thompson), and new PBL (MYNN, QNSE) schemes included
- Random perturbations (Gaussian-type & recursive filtered) were added to 3 members
- Post-processed ensemble product in near realtime

System Highlight

- 4 km grid for ARW & ARPS; ~ 4.16 km for NMM
- 51 vertical levels for all three models
- 30 hour forecast initialized at 00 UTC, ended at 06 UTC the next day
- April 26 June 18 (on weekdays)
- A Cray XT4 supercomputer at NICS/U. of Tennessee (over 18000 cores) was dedicated 6 h each day to run the forecasts
- Selected hourly 2D fields from all members and postprocessed ensemble products available to SPC/NSSL, DTC, and HPC in realtime, and evaluated by HWT participants

System Highlight

- NAM 12 km 00Z analysis/forecast were used to provide IC/LBC for control members
- 13 SREF 21Z forecast members were used to extract initial perturbations and hourly LBCs for perturbed members
- ARPS 3DVAR and Cloud Analysis are used to analyze 140 WSR-88D Level II radar radial wind and reflectivity to all but three members

Post-processed ensemble product

- Ensemble maximum, mean
- Probability matching mean (accumulated precipitation, reflectivity)
- Frequency-based probability
- Neighborhood probability, with 2D Gaussian smoothing (ROI=40km, σ=10)
- More...

2010 Spring Experiment Domains

ARW member configuration (19)

member	IC	BC	Radar data	microphy	LSM	PBL
arw_cn	00Z ARPSa	00Z NAMf	yes	Thompson	Noah	MYJ
arw_c0	00Z NAMa	00Z NAMf	no	Thompson	Noah	MYJ
arw_m3	arw_cn + random pert	00Z NAMf	yes	Thompson	Noah	MYJ
arw_m4	arw_cn + RF pert	00Z NAMf	yes	Thompson	Noah	MYJ
arw_m5	arw_cn + em-p1 + RF pert	21Z SREF em-p1	yes	Morrison	RUC	YSU
arw_m6	arw_cn + em-p1_pert	21Z SREF em-p1	yes	Morrison	RUC	YSU
arw_m7	arw_cn + em-p2_pert	21Z SREF em-p2	yes	Thompson	Noah	QNSE
arw_m8	arw_cn – nmm-p1_pert	21Z SREF nmm-p1	yes	WSM6	RUC	QNSE
arw_m9	arw_cn + nmm-p2_pert	21Z SREF nmm-p2	yes	WDM6	Noah	MYNN
arw_m10	arw_cn + rsmSAS-n1_pert	21Z SREF rsmSAS-n1	yes	Ferrier	RUC	YSU
arw_m11	arw_cn – etaKF-n1_pert	21Z SREF etaKF-n1	yes	Ferrier	Noah	YSU
arw_m12	arw_cn + etaKF-p1_pert	21Z SREF etaKF-p1	yes	WDM6	RUC	QNSE
arw_m13	arw_cn – etaBMJ-n1_pert	21Z SREF etaBMJ-n1	yes	WSM6	Noah	MYNN
arw_m14	arw_cn + etaBMJ-p1_pert	21Z SREF etaBMJ-p1	yes	Thompson	RUC	MYNN
arw_m15	00Z ARPSa	00Z NAMf	yes	WDM6	Noah	MYJ
arw_m16	00Z ARPSa	00Z NAMf	yes	WSM6	Noah	MYJ
arw_m17	00Z ARPSa	00Z NAMf	yes	Morrison	Noah	MYJ
arw_m18	00Z ARPSa	00Z NAMf	yes	Thompson	Noah	QNSE
arw_m19	00Z ARPSa	00Z NAMf	yes	Thompson	Noah	MYNN

For all ARW members: ra_lw_physics= RRTM; ra_sw_physics=Goddard; cu_physics=none

NMM member configuration (5)

member	IC	BC	Radar data	mp_phy	lw_phy	sw-phy	sf_phy
nmm_cn	00Z ARPSa	00Z NAMf	yes	Ferrier	GFDL	GFDL	Noah
nmm_c0	00Z NAMa	00Z NAMf	no	Ferrier	GFDL	GFDL	Noah
nmm_m3	nmm_cn + nmm- n1_pert	21Z SREF nmm- n1	yes	Thompson	RRTM	Dudhia	Noah
nmm_m4	nmm_cn + nmm- n2_pert	21Z SREF nmm- n2	yes	WSM 6-class	RRTM	Dudhia	RUC
nmm_m5	nmm_cn + em-n1_pert	21Z SREF em-n1	yes	Ferrier	GFDL	GFDL	RUC

For all NMM members: *pbl_physics*=MYJ; *cu_physics*=none

ARPS member configuration (2)

member	IC	BC	Radar data	Microphy.	radiation	sf_phy
arps_cn	00Z ARPSa	00Z NAMf	yes	Lin	Chou/Suarez	Force-restore
arps_c0	00Z NAMa	00Z NAMf	no	Lin	Chou/Suarez	Force-restore

For all ARPS members: no cumulus parameterization

Members in red contribute to the 15-member sub-ensemble for post-processed product

CAPS Ensemble Product

- <u>http://forecast.caps.ou.edu</u>
- <u>http://www.caps.ou.edu/~fkong/sub_atm/spring10.html</u>
- 4TB data per day archived (A total of 36 days complete dataset)

Probability matching mean: 1-h accumulated precipitation

(24-h fcst, valid 00Z May 20)

May 10 OKC Tornado – valid 22 UTC

0–6Z accumulated precipitation: 30h (June 1, 2010)

Mean

Prob match

Prob of 1"

QPE

0–6Z accumulated precipitation: 30h (June 1, 2010)

SSEF mean

QPE

SREF mean

SREF Prob match

NAM

12–18Z accumulated precipitation: 18h (June 8, 2010)

SSEF mean

SSEF Prob match

QPE

SREF mean

SREF Prob match

NAM

18–0Z accumulated precipitation: 24h (June 8, 2010)

SSEF mean

SSEF Prob match

QPE

SREF mean

SREF Prob match

NAM

0–6Z accumulated precipitation: 30h (June 8, 2010)

SSEF mean

QPE

SREF mean

SREF Prob match

NAM

12–18Z accumulated precipitation: 18h (May 19, 2010)

SSEF mean

SSEF Prob match

QPE

SREF mean

SREF Prob match

NAM

18–0Z accumulated precipitation: 24h (May 19, 2010)

SSEF mean

SSEF Prob match

QPE

SREF mean

SREF Prob match

NAM

12–18Z accumulated precipitation: 18h (June 14, 2010 – OKC Flood Day)

SSEF mean

SSEF Prob match

QPE

SREF mean

SREF Prob match

NAM

18–0Z accumulated precipitation: 24h (June 14, 2010 – OKC Flood Day)

SSEF mean

SSEF Prob match

QPE

SREF mean

SREF Prob match

NAM

 SSEF was a "transformational" event for warm season QPF

- remarks from HPC participant

Different microphysics

- Thompson (new)
 - WDM6
 - WSM6
 - Morrison

June 1, 2010 case

Different Microphysics - Composite reflectivity at 12h

Different Microphysics - Composite reflectivity at 15h

Different Microphysics - Composite reflectivity at 18h

obs

WSM6

Different Microphysics - Composite reflectivity at 21h

Thomspon

WSM6

Different Microphysics - Composite reflectivity at 24h

Thomspon

WDM6

obs

WSM6

Different Microphysics - Composite reflectivity at 27h

WSM6

