Modeling the Effects of Regional Climate Change and Variability on High Impact Weather

Greg Holland

James Done, Cindy Bruyere, Asuka Suzuki-Parker, Cort Cooper, Rowan Douglas

NCAR Earth System Laboratory National Center for Atmospheric Research

NCAR is Sponsored by NSF and this work is partially supported by the Willis Research Network and the Research Program to Secure Energy for

Goals

- Developing a capacity for predicting regional climate at fine spatial scales over decades, using:
 - Regional Climate Modeling
 - Statistical Downscaling
 - Development of Decision Support Tools

NRCM Development to Date

- Concept: Workshop on Research Needs and Directions of Regional Climate Modeling Using WRF and CCSM (Leung, Kuo and Tribbia) March 2005;
- NRCM V1: Tropical Channel Model simulations of current climate;
- NRCM V2: North American Regional Climate.

NRCM V2: North American Regional Climate

Nested inside CCSM

- NRCM: 1995-2005, 2020-2030, 2045-2055 (IPCC AR1)
- Bias correction applied to CCSM Boundary Conditions
- Use of statistical downscaling
- Development of Decision Tools

NRCM V2 Projects

- CCSM Bias Correction
- Specific Foci
 - North Atlantic Hurricanes (RPSEA, WDB, WRN)
 - Intermountain West Water and Snowpack (WGA)
 - Wind Energy (NREL)
 - Climate of the Mid West (ANL)
 - Caribbean Rainfall (CIMH)
- Development of Tools
 - Statistical Downscaling
 - Decision Support

Example: North Atlantic TCs: Detection

Detection Criteria

- 1) Find SLP local minima
- 2) |Max relative vorticity| > 5x10⁻⁵s⁻¹
- 3) Max wind speed > 17m/s
- 4) Warm core
- 5) Vertical thermal structure
- 6) Cyclone Phase
- 7) Must be satisfied >48 h

Sensitivity Analysis

Cyclone Phase good at removing "subtropical" systems
Considerable sensitivity to selection of values for criteria

(Suzuki 2010)

Example: North Atlantic TCs: Frequency

	Current observation	Model 1995-2005	Model 2020-2030	Model 2045-2055
Mean	7.8	7.6	8.5	10.4
STD	3.6	4.1	1.2	4.1

* Current observation: filtered to contain TC's with maximum wind > 17m/s for at least 2 days to be consistent with TC tracking criteria in model

Example: North Atlantic TCs Intensity

Example: Decision Tools, the Willis Hurricane Index $WHI = (\frac{v_m}{65})^3 + 5(\frac{R_h}{50}) + 5(\frac{v_t}{15})^{-2}$

For
$$v_t < 25$$
 and $v_m > 65$,

If $v_t < 7, v_t = 7$,

(Holland and Owens (2009)

Parameter	1995-2005	2020-2030	2045-2055
# Cyclones	15	10	20
Average Intensity (ms ⁻¹ /kt)	26/50	25/49	25/49
Maximum Intensity (ms ⁻¹ /kt)	37/72	34/67	37/73
Average Rmax (km/nm)	81/44	45/24	58/31
Average Trans. Speed (ms ⁻¹ /kt	5/10	6/12	6/11
Average Hurricane WHI	24.4	19.3	22.1
Ave Hurricane Damage	\$5.7b	\$2.5b	\$4.3b

(Done 2010)

NRCM Work in Progress

• Development:

- NRCM-Chem, led by Jean-Francois Lamarque and Mary Barth;
- Fully coupled NRCM-CCSM (adding ROM);
- Developing Projects:
 - Climate of the Mid-west (with ANL);
 - Antarctic Climate (with NCAS);
 - Intermountain West Precipitation (Western Water Authorities);
 - New paradigm for Catastrophe Modeling (Willis Research Network, Wharton Institute, UP);
 - Characterizing and Quantifying Uncertainties in Climate Model Projections at the Regional Scale (ANL);
- Major Priority
 - Upscale Impact of Mesoscale Weather on Climate.

The Next Generation

NRCM is helping establish an experience and regional-climate-modeling base for the new Model for Prediction Across Scales

Enabling global mesoscale modeling with capacity to run on future, massivelyparallel machines

Thank You

Regional Climate Prediction: Developing Leading Edge Science to Advise Society on:

