

Updates and New Developments of WRF "Obsnudging" FDDA and Operational Applications

Yubao Liu

Wanli Wu, Linlin Pan, Al Bourgeois, Gregory Roux, William Y.Y. Cheng, Wei Yu, Mei Xu, Yuewei Liu, Francois Vandenberghe, Tom Warner and John Pace

NCAR/Research Application Laboratory

Acknowledgements: RTFDDA development team, users, and our collaborators including ATEC, DTRA, AirDat, Gov. of Israel, Xcel Energy and other agencies.

(11th WRF Users Workshop, 22 - 24 June 2010, Boulder, CO)

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Outline

- 1. Obs-nudging Updates in WRF v3.2
- 2. WRF RTFDDA, Ensemble RTFDDA and Real-time Operational Applications
- 3. Roadmap Advancing Obs-nudging
- 4. Continue Incremental Enhancements
- 5. Toward Nex-Gen Advanced Capability

1. Obs-nudging Updates in WRF v3.2

- NCAR RAL leads the "obs-nudging" in WRF-ARW, sponsored by the US Army.
- In the last 2.5 years, DTRA sponsored NCAR and Penn State to validate and enhance "analysis nudging" (PSU) and "obs-nudging" FDDA in WRF.
- Paper 2.3 (Tue. Morning) has covered the new upgrades of both nudging schemes in WRF v3.2.
- This talk will focus on "obs-nudging"-based RTFDDA applications and the new developments.

Outline

- 1. Obs-nudging Updates in WRF v3.2
- 2. WRF RTFDDA, Ensemble RTFDDA and Real-time Operational Applications
- 3. Roadmap for Advancing Obs-nudging
- 4. Continue Incremental Enhancements
- 5. Toward Nex-Gen Advanced Capability

RTFDDA: Cycling 4DDA and Forecasting

Ensemble-RTFDDA

Example: 30 Member Xcel E-RTFDDA

30 members, 30/10 km Doms, 6h cycles, 72h fcsts

E#	LBC	WRF Members (15)	E#	LBC	MM5 Members (15)
1	NAM	Control: WRF baseline physics	16	NAM	Control: MM5 baseline physics
2	GFS	Control: WRF baseline physics	17	GFS	Control: MM5 baseline physics
3	NAM	RUC PBL + Thompson MP	18	NAM	Simple cloud-effect radiation
4	NAM	MYJ PBL	19	NAM	ETA TKE PBL
5	NAM	QNSE PBL	20	NAM	Kain-Fritsch cumulus
6	NAM	WMS6 microphysics	21	NAM	Goddard microphysics
7	NAM	Goddard Radiation	22	GFS	Betts-Miller cumulus
8	GFS	BouLac PBL	23	GFS	Reisner 3-ice microphysics
9	GFS	MYNN2.5 PBL	24	GFS	CCM2 radiation
10	GFS	Betts-Millar CUP	25	GFS	GFS LBC Phase-uncertainty 1
11	GFS	Slope effect radiation	26	GFS	Symmetric perturb to Member 25
12	GFS	BMJ cumulus	27	NAM	NAM LBC Phase-uncertainty 1
13	GFS	CAM radiation	28	NAM	Symmetric perturb. to Member 27
14	NAM	Morrison MP	29	GFS	Surface/sounding perturbation
15	GFS	Thompson MP	30	GFS	Symmetric perturb. to Member 29

Operational RTFDDA Systems

8 systems for seven Army test ranges

DPG E-RTFDDA: https://dpg-ingest.dpg.army.mil/images/ens/

Operational RTFDDA System

Wind energy forecasting for Xcel Energy

RTFDDA Deterministic Prediction:

- 3h update cycles
- 24-72h forecasts
- 15min to 1h outputs

30 member E-RTFDDA Probabilistic Prediction:

- 6h update cycles
- 72h forecasts
- Ih outputs

Operational RTFDDA Systems ARDAT AirDat 12/4km CONUS RTFDDA System

Real-time Operational RTFDDA Systems 30/10/4km RTFDDA for Government of Israel

Real-time semi-operational since June 2009

Real-time Operational RTFDDA Systems More Operational RTFDDA systems

- □ "Pentagon shield" Homeland Security
- New York Support T&D forecast
- Saudi Arabia Weather Modification
- □ Wyoming Weather Modification
- DOT Mixon-Hill Road Weather Forecasting

Outline

- 1. Obs-nudging Updates in WRF v3.2
- 2. WRF RTFDDA, Ensemble RTFDDA and Real-time Operational Applications
- 3. Roadmap for Advancing Obs-nudging
- 4. Continue Incremental Enhancements
- 5. Toward Nex-Gen Advanced Capability

Roadmap Toward Advanced RTFDDA

Next-Gen 4D-REKF System

→ Incorporate Ensemble Kalman Filter (DART)
→ Hybrid WRFVar-Ensemble DA Algorithms
→ Seamless ensemble DA and prediction

Ensemble RTFDDA (Obs-nudging Ensembles)

Improvements:

- \rightarrow Spatial weights
- \rightarrow Temporal weights
- \rightarrow New data

Hybrids: → WRFVar/GSI → VDRAS

 \rightarrow Grid-nudging

WRF-RTFDDA: Obs-nudging

Outline

- 1. Obs-nudging Updates in WRF v3.2
- 2. WRF RTFDDA, Ensemble RTFDDA and Real-time Operational Applications
- 3. Roadmap for advancing Obs-nudging
- 4. Continue Incremental Enhancements
- 5. Toward Nex-Gen Advanced Capability

New "Obs-nudging" Capability Planned for WRF V3.3

 "Properly" assimilate observations with an existence of displacement of model terrain and observation station elevation

(A fundamental issue?!)

New obs, new assimilation approaches

(e.g. Wind farm data: Speed only?)

 Platform-dependent temporal/spatial/bogus weighting function

Bring Non-conventional Obs into RTFDDA with RTFDDA-WRFVar Hybrid DA

Incorporate 3DVAR capability to assimilate indirect measurements of radars, satellite, etc

Bring Non-conventional Obs into RTFDDA with RTFDDA-VDRAS Hybrid DA

Incorporating RAL nowcasting technologies to enhance RTFDDA nowcasting capabilities

Bring Non-conventional Obs into RTFDDA by Incorporating Other Analyses

Relax toward any other good global or regional analysis that makes use of more data than RTFDDA

Outline

- 1. Obs-nudging Updates in WRF v3.2
- 2. WRF RTFDDA, Ensemble RTFDDA and Real-time Operational Applications
- 3. Roadmap for Advancing Obs-nudging
- 4. Continue Incremental Enhancements
- 5. Toward Nex-Gen Advanced Capability
- 5.1 "Seamless" EDA and EPS system 5.2 4D-REKF: a seamless obs-nudging - EnKF hybrid

5.1 "Seamless" EDA and EPS

The NCAR Ensemble Real-Time Four-Dimensional Data Assimilation (E-RTFDDA) and forecasting system

The NCAR Data Assimilation Research Testbed (DART) EnKF tools

E-RTFDDA-EnKF

(A "seamless" EnKF DA and EPS system)

Ensemble DA versus Prediction

- Even though not well recognized by many, EDA and EPS development diverge. Typically,
 - An ensemble for EDA is not well formulated for probabilistic prediction
 - An ensemble for EPS does not contain ensemble DA components
 - "Best-analysis" of Kalman Filter is not used
- Recent studies show benefit of integrating physics perturbations for EnKF

Theoretically, both EDA and EPS are built on the same foundation: both rely on an ensemble (forecast) that can properly estimate PDF

Modeling Experiments

4 EXPs (5 day long)

Ensemble size: 30 Forecast model: WRF-ARW B.C.s: GFS and NAM

Observations assimilated:

Radiosondes, ACARS, Satellite cloud drifting winds, Wind profilers, various SFC data including mesonets (U,V, T only; not q)

EaKF Filter:

Assimilation period: 1 hr Fixed inflation: 1.02 Cutoff: 0.05 radius (~320 km)

Results: Comparison with 45 radiosondes Wind speed errors averaged for 4-day cycles

Comparison of Wind Speed at IAD

5.2 4D-REKF: Four Dimensional Relaxation Ensemble Kalman Filter

- Combine E-RTFDDA obs-nudging and EnKF
 - E-RTFDDA \rightarrow Error Covariance \rightarrow Kalman Gain
 - Kalman Gain \rightarrow Obs-nudging \rightarrow (E-)RTFDDA
 - It brings EDA Kalman Gain into WRF equations, not I.Cs.

4D-REKF inherits advantages of EnKF and FDDA

- A complete Seamless EDA + EPS technology
- A 4DDA algorithm producing "spun-up" I.C.s for NWP
- Indirect observations can be assimilated
- Capable of incorporating new EDA/EPS advances

Theory of 4D-REKF

Obs-nudging: EnKF: $x^{a} = x^{f} + \underline{Ke}(y^{o} - Hx^{f})$ $Dx/Dt = \dots + G W (y^{o} - Hx^{f})$ $\boldsymbol{K}\boldsymbol{e} = \boldsymbol{P}_{a}^{f}\boldsymbol{H}^{T}(\boldsymbol{H}\boldsymbol{P}_{a}^{f}\boldsymbol{H}^{T} + \boldsymbol{R})^{-1}$ $W = W_q W_{time} W_{horizontal} W_{vertical}$ $P^a = (I - KH)P^f_a$ Obs-nudging \rightarrow EnKF: one Dt nudging $X^a = X^f + DtGW(y^o - Hx^f)$ where $X^{f} = X_{t-1} + Dt$ (...) **EnKF** EnKF: DtGW = K 4D-REKF: DtGW = G W_aW_{time} K_e - Nudging-EnKF $Dx/Dt = \dots + GW_aW_{time}K_e (y^o - Hx_{model})$

Summary

- New features of "Obs-nudging" has been added to WRF v3.2
- At present ~20 WRF "Obs-nudging" based RTFDDA and E-RTFDDA systems are running for mesoscale applications.
- On-going developments of WRF "obsnudging" include incremental refinements and building "seamless" EDA/EPS ensemble capability and nex-gen 4D-REKF.

