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Recent Experience with Ensemble Data Assimilation in
WRF/DART

Assimilation of radar obs:
    David Dowell, Wiebke Deierling

Tropical cyclone results:
    Ryan Torn (SUNY Albany), Steven Cavallo

Assimilation of surface obs:
    Soyoung Ha, Glen Romine (w/ partial support of AFWA)

DART development:
    Jeff Anderson, Nancy Collins, Glen Romine, Tim Hoar

Plus: Altug Aksoy (CIMAS) Alain Caya (Environment Canada),
Yongsheng Chen (York U), Josh Hacker (NPS), Hui Liu, Bill
Skamarock



The Ensemble Kalman Filter (EnKF)

EnKF combines data assimilation and ensemble forecasting
– Analysis step produces ensemble of analyses, given new obserations
– Analysis step employs cov( obs, state ), estimated from short-range ensemble

(schematic explanation can be found after concluding slide)
– In forecast step, make ensemble of short-range forecasts from ensemble of analyses

Attractions for mesoscale applications
– Few assumptions about covariances, so applicable to range of scales/phenomena
– Flexible to details of model, such as complex microphysical schemes
– Ease of implementation and parallelization; no adjoints

For applications here, use 50-100 members



Data Assimilation Research Testbed (DART)

Provides general, model-independent algorithms for ensemble filtering

Numerous DART-compliant models
– ARW, CAM, NOGAPS, …

Parallel analysis scheme that scales well to 100ʼs of processors

See http://www.image.ucar.edu/DAReS/DART/



WRF/DART

Interfaces for WRF in DART
– WRF variables on model grid ↔ DART state vector
– Distance between any two elements of state vector

Suite of observation operators
– Includes Doppler radar and various GPS; no radiances

Scripts for advancing WRF under DART control

Capable of assimilation on multiple, nested domains simultaneously



Radar Assimilation for Convective Storms

WRF configured as idealized cloud model
– No terrain, no PBL, open lateral boundaries
– O(1 km) horizontal resolution, O(200 km X 200 km) domains
– Larger scales represented only via specified environmental sounding, e.g., from

nearby radiosonde

Assimilate radial velocity, reflectivity from Doppler radar(s)
– Analyses every 2 min; each elevation angle assimilated separately
– Automated velocity unfolding within EnKF



Radar Assimilation for Convective Storms (cont.)

Successful assimilation in > 10 cases to date
– Rms fit of background forecast to obs ~ 5 m/s, 8 dBZ

Useful today for radar analysis, as replacement for traditional retriveval
techniques.



Radar Assimilation for Convective Storms (cont.)

One example: 5 July 2000 supercell (STEPS)
– Assimilate only radial velocity; reflectivity is independent observation.

Courtesy W. Deierling and D. Dowell

Observed reflectivity at 7 km Ens-mean analysis at 7 km



Analyses from DOW vr obs, courtesy of Jim Marquis (Penn St)
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Real-Time Analyses for Tropical Cyclones

Analyses from WRF/DART provided ICs for NCARʼs high-res TC
forecasts during 2009 season

Produced 36-km analyses every 6 h
– Assimilate conventional obs + satellite winds + vortex position, intensity
– NO bogussing of any kind; no satellite radiances

WRF configuration
– “hurricane” physics + KF convection
– 36 km, with stationary 12-km nest centered on each TC/TS/TD

System cycled continuously for ~ 4 months
– Large drift in stratosphere owing to radiation bias, now fixed.  See:

Cavallo, S. M., J. Dudhia and C. Snyder, 2010: An improved upper boundary
condition for longwave radiative flux in the stratosphere to correct model biases. Mon.
Wea. Rev., submitted.



Real-Time Analyses for Tropical Cyclones (cont.)



Real-Time Analyses for Tropical Cyclones (cont.)

Analyses captured all 2009 storms, from depressions to hurricanes.
– No need to bogus
– No spurious storms, despite not assimilating radiances

RMS fits of analysis and 6-h forecast to best-track estimates

Courtesy R. Torn



Real-Time Analyses for Tropical Cyclones (cont.)

Analysis increment from position observation
– Reflects cov( wind speed, vortex position ), which in turn reflects vortex structure
– Shifts vortex coherently and consistently in all model fields

Hurricane Bill, 00Z 19 Aug 2009

Wind speed @ 1st level

contours: ens.-mean, 6-h forecast

colors: increment given obs of
vortex position (analysis - forecast)

Courtesy S. Cavallo



Toward Short-Range Forecasts of Convection

WRF/DART already works well for analysis of isolated convection on
limited domain.

Wish to handle larger convective systems, multiple radars and make
forecasts at 0-6 h.

– Need “full” ARW: terrain, PBL and other parameterizations, LBCs/nesting
– Need larger domains + good analyses of mesoscale environment
– Need to assimilate obs from multiple Doppler radars



VORTEX2 Retrospective Analyses and Forecast
4-17 June 2009, covering most interesting VORTEX2 period
15-km domain provides “mesoanalysis”

– Full-physics ARW, KF convective scheme
– Assimilation of conventional obs, 6-h cycling

3-km domain uses no convective scheme
– Still to come: assimilation of radar obs with very freqent cycling [O(minutes)]

15-km domain 3-km domain



6-h forecast of surface specific humidity (contours: ensemble mean)

Courtesy Glen Romine



6-h forecast, probability (%) of max helicity > 75 m2/s2

Courtesy Glen Romine

Tornado report

Hail report



Summary and Closing Thoughts

WRF/DART now a reliable research tool
– Applicable to range of scales and phenomena
– Applicable both for NWP and “science”
– Good results and stable performance with limited observation sets; e.g., no bogussing

and no radiances for TC applications

Analyses with range of scales are frontier
– E.g. convection/clouds + mesoscale

Cycling data assimilation for model evaluation
– Model errors → significant (dramatic!) analysis errors when cycling for long periods
– Eliminates some sources of bias, such as from external analysis

A good forecast model is crucial
– EnKF uses model solutions in estimating covariances; biased or unphysical solutions

will be reflected in analysis increments





5 July 2000 STEPS supercell

WRF
graupel
mass

Observed
graupel
mass

Red solid line: 6 minute running average

Black dotted line: 2 minute WRF output

W
R

F 
gr

au
pe

l m
as

s 
[k

g]
O

bs
er

ve
d 

gr
au

pe
l m

as
s 

[k
g]

Note:
graupel+hail
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r = 0.87



EnKF (ensemble mean)

0026 UTC 0028 UTC 0030 UTC 0032 UTC 0034 UTC

Dual-Doppler

W (m/s): ζ
z = 500m

= radar location





How the EnKF works

Suppose we wish to assimilate an observation of vr
Consider how assimilation affects a model variable, say w.

Begin with:
– ensemble of short-range forecasts (of model variables)
– Observed value of vr



How the EnKF works (cont.)

1. Compute vr for each ensemble member



How the EnKF works (cont.)

1. Compute vr for each ensemble member
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How the EnKF works (cont.)

1. Compute vr for each ensemble member
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How the EnKF works (cont.)

1. Compute vr for each ensemble member
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How the EnKF works (cont.)

2. Compute best-fit line that relates vr and w
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How the EnKF works (cont.)

3. Analysis moves toward observed value of vr and along best-fit line
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How the EnKF works (cont.)

3. Analysis moves toward observed value of vr and along best-fit line
… have gained information about unobserved variable, w
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How the EnKF works (cont.)

4. Update deviation of each ensemble member about the mean as well.

Yields initial conditions for ensemble forecast to time of next observation.


