Recent upgrades and improvements of WRF 4D-Var V3.3

Xin Zhang Xiang-Yu Huang

NCAR Earth System Laboratory

12th WRF Users' Workshop, Boulder, CO

NCAR is sponsored by the National Science Foundation

- 4 週 ト - 4 三 ト - 4 三 ト

New features New WRFPLUS V3.3 Parallel performance

New features

- New WRF tangent linear and adjoint codes (WRFPLUS V3.3) based on the latest WRF repository codes.
- WRFPLUS V3.3 can be used as a standalone tool , such as in application of forecast sensitivity to observation.

New features New WRFPLUS V3.3 Parallel performance

New features

- New WRF tangent linear and adjoint codes (WRFPLUS V3.3) based on the latest WRF repository codes.
- WRFPLUS V3.3 can be used as a standalone tool , such as in application of forecast sensitivity to observation.
- Accurate tangent linear and adjoint check.

New features New WRFPLUS V3.3 Parallel performance

New features

- New WRF tangent linear and adjoint codes (WRFPLUS V3.3) based on the latest WRF repository codes.
- WRFPLUS V3.3 can be used as a standalone tool , such as in application of forecast sensitivity to observation.
- Accurate tangent linear and adjoint check.
- WRF model, WRF tangent linear model and adjoint model are compiled as a library and callable subroutines in WRFDA framework.

New features New WRFPLUS V3.3 Parallel performance

New features

- New WRF tangent linear and adjoint codes (WRFPLUS V3.3) based on the latest WRF repository codes.
- WRFPLUS V3.3 can be used as a standalone tool , such as in application of forecast sensitivity to observation.
- Accurate tangent linear and adjoint check.
- WRF model, WRF tangent linear model and adjoint model are compiled as a library and callable subroutines in WRFDA framework.
- Customized coupler to couple WRFDA, WRF and WRFPLUS as a single executable system.

New features New WRFPLUS V3.3 Parallel performance

New features

- New WRF tangent linear and adjoint codes (WRFPLUS V3.3) based on the latest WRF repository codes.
- WRFPLUS V3.3 can be used as a standalone tool , such as in application of forecast sensitivity to observation.
- Accurate tangent linear and adjoint check.
- WRF model, WRF tangent linear model and adjoint model are compiled as a library and callable subroutines in WRFDA framework.
- Customized coupler to couple WRFDA, WRF and WRFPLUS as a single executable system.
- Robust WRF 4D-Var system across various platforms and compilers (IBM, Linux, Mac : xlf, pgi, intel, gfortran).

New features New WRFPLUS V3.3 Parallel performance

New features

- New WRF tangent linear and adjoint codes (WRFPLUS V3.3) based on the latest WRF repository codes.
- WRFPLUS V3.3 can be used as a standalone tool , such as in application of forecast sensitivity to observation.
- Accurate tangent linear and adjoint check.
- WRF model, WRF tangent linear model and adjoint model are compiled as a library and callable subroutines in WRFDA framework.
- Customized coupler to couple WRFDA, WRF and WRFPLUS as a single executable system.
- Robust WRF 4D-Var system across various platforms and compilers (IBM, Linux, Mac : xlf, pgi, intel, gfortran).

New features New WRFPLUS V3.3 Parallel performance

Sample Tangent Linear and Adjoint Check of WRFPLUS

Tangent linear check:6 hours

alpha_m=.1000E+00	coef=	0.98186174930325E+00	val_n= 0.3725210E+11	val_l= 0.3794027E+11
alpha_m=.1000E-01	coef=	0.99807498026522E+00	val_n= 0.3786723E+09	val_1= 0.3794027E+09
alpha_m=.1000E-02	coef=	0.99970559707666E+00	val_n= 0.3792910E+07	val_1= 0.3794027E+07
alpha_m=.1000E-03	coef=	0.99992019503144E+00	val_n= 0.3793724E+05	val_1= 0.3794027E+05
alpha_m=.1000E-04	coef=	0.10000447262220E+01	val_n= 0.3794196E+03	val_1= 0.3794027E+03
alpha_m=.1000E-05	coef=	0.99999981575068E+00	val_n= 0.3794026E+01	val_1= 0.3794027E+01
alpha_m=.1000E-06	coef=	0.99999998152933E+00	val_n= 0.3794027E-01	val_1= 0.3794027E-01
alpha_m=.1000E-07	coef=	0.9999999980017E+00	val_n= 0.3794026E-03	val_1= 0.3794027E-03
alpha_m=.1000E-08	coef=	0.99999956711797E+00	val_n= 0.3794025E-05	val_1= 0.3794027E-05
alpha_m=.1000E-09	coef=	0.10000030220656E+01	val_n= 0.3794038E-07	val_1= 0.3794027E-07
alpha_m=.1000E-10	coef=	0.99996176999678E+00	val_n= 0.3793882E-09	val_1= 0.3794027E-09

Adjoint check: 6 hours

ad_check:	VAL_TL:	0.42476489986911E+11
ad_check:	VAL_AD:	0.42476489986912E+11

< ロト (同) (三) (三)

New features New WRFPLUS V3.3 Parallel performance

Sample Tangent Linear and Adjoint Check of WRFPLUS

Tangent linear check:6 hours

alpha_m=.1000E+00	coef=	0.98186174930325E+00	val_n= 0.3725210E+11	val_l= 0.3794027E+11
alpha_m=.1000E-01	coef=	0.99807498026522E+00	val_n= 0.3786723E+09	val_1= 0.3794027E+09
alpha_m=.1000E-02	coef=	0.99970559707666E+00	val_n= 0.3792910E+07	val_1= 0.3794027E+07
alpha_m=.1000E-03	coef=	0.99992019503144E+00	val_n= 0.3793724E+05	val_1= 0.3794027E+05
alpha_m=.1000E-04	coef=	0.10000447262220E+01	val_n= 0.3794196E+03	val_1= 0.3794027E+03
alpha_m=.1000E-05	coef=	0.99999981575068E+00	val_n= 0.3794026E+01	val_1= 0.3794027E+01
alpha_m=.1000E-06	coef=	0.99999998152933E+00	val_n= 0.3794027E-01	val_1= 0.3794027E-01
alpha_m=.1000E-07	coef=	0.9999999980017E+00	val_n= 0.3794026E-03	val_1= 0.3794027E-03
alpha_m=.1000E-08	coef=	0.99999956711797E+00	val_n= 0.3794025E-05	val_1= 0.3794027E-05
alpha_m=.1000E-09	coef=	0.10000030220656E+01	val_n= 0.3794038E-07	val_1= 0.3794027E-07
alpha_m=.1000E-10	coef=	0.99996176999678E+00	val_n= 0.3793882E-09	val_1= 0.3794027E-09

Adjoint check: 6 hours

ad_check:	VAL_TL:	0.42476489986911E+11
ad_check:	VAL_AD:	0.42476489986912E+11

《曰》 《聞》 《臣》 《臣》

New features New WRFPLUS V3.3 Parallel performance

WRF 4D-Var $\overline{V3.2}$: Parallel run using part of processors

4D-Var is a sequential algorithm. However, the old WRF 4D-Var constructed on the Multiple Program Multiple Data mode, which have to split the total processors into 3 subsets for DA, NL and AD/TL. Lots of CPU time are wasted

New features New WRFPLUS V3.3 Parallel performance

WRF 4D-Var V3.3: Parallel run using all processors

Benefit from the single executable framework, every CPU is working at any time. No IDLE any more.

New features New WRFPLUS V3.3 Parallel performance

Performance improvement WRF 4D-Var framework

- 270x180x41@20km,6h window, 1h obs_bin, 10 iterations
- 10 iterations FGAT (identity TL/AD model), NCAR bluefire (IBM P6)

Single observation experiment I

Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

< ロト (同) (三) (三)

Single observation experiment I

- Initial time: 2000_01_25_00 : 00 : 00
- Ending time: 2000_01_25_06 : 00 : 00
- Observation: 500 mb temperature at ending time O B = -1.168K
- Plotting the difference at ending time between the forecast from analysis and from background to investigate the impact of 6h obs. on IC.

Single observation experiment I

Consider Lateral boundary condition as control variables An OSSE radar data assimilation with WRF 4D-Var Real case

Remarks

Forecasted 500mb T difference (DA forecast - reference forecast)

- * is the location of obs. at the ending time (6h).
- Initial perturbation is on the upstream of the obs.
- Evolved perturbation at 6h hit the obs. location

Single observation experiment I

Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

< ロト (同) (三) (三)

What we learn:

- WRF 4D-Var has the capability to assimilate the observations within a time window.
- WRF 4D-Var produces the flow-dependent analysis increments.

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

< ロト (同) (三) (三)

Consider Lateral boundary condition as control variable

$$J = J_b + J_o + J_c + \frac{J_{lbc}}{J_{lbc}}$$

$$J_{lbc} = \frac{1}{2} (\mathbf{x}(t_k) - \mathbf{x}_b(t_k))^T \mathbf{B}^{-1} (\mathbf{x}(t_k) - \mathbf{x}_b(t_k))$$
$$= \frac{1}{2} \delta \mathbf{x}(t_k)^T \mathbf{B}^{-1} \delta \mathbf{x}(t_k)$$

 J_{lbc} is the J_b at the end of the assimilation window and the lateral boundary control is obtained through

$$\frac{\partial \delta \mathbf{x}_{lbc}}{\partial t} = \frac{\delta \mathbf{x}(t_k) - \delta \mathbf{x}(t_0)}{t_k - t_0}$$

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

Single observation experiment II

To investigate the impact of lateral boundary control, the 6h observation is placed close to boundary and downstream of the boundary inflow, we expect that the major analysis increments at 0h should be in boundary condition and outside of domain.

 What's new in WRF 4D-Var V3.3
 Single observation experiment I

 WRF 4D-Var System Validation
 Consider Lateral boundary condition as control variabl

 Summary
 An OSSE radar data assimilation with WRF 4D-Var

 Real case
 Real case

Valid: 2000-01-25_00:00:00

(日) (종) (종) (종)

 What's new in WRF 4D-Var V3.3
 Single observation experiment I

 WRF 4D-Var System Validation
 Consider Lateral boundary condition as control variabl

 Summary
 An OSSE radar data assimilation with WRF 4D-Var

 Real case
 Real case

Valid: 2000-01-25_00:00:00

(日) (종) (종) (종)

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

< ロト (同) (三) (三)

What we learn:

- The major increment is in the boundary condition(south boundary, invisible here)
- Increment in initial condition alone is hard to fit the observation.
- For observations close to in-flow boundary, the impact of LBC control is important.

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

・ロト ・ 同ト ・ ヨト ・ ヨト

- TRUTH Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.
- NODA Both initial condition and boundary condition from NCEP GFS data.

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

< ロト (同) (三) (三)

- TRUTH Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.
- NODA Both initial condition and boundary condition from NCEP GFS data.
- 3DVAR 3DVAR analysis at 2002061301Z used as the initial condition, and boundary condition from NCEP GFS. Only Radar radial velocity at 2002061301Z assimilated (total data points = 97,033), 3 outer loops.

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

- TRUTH Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.
- NODA Both initial condition and boundary condition from NCEP GFS data.
- 3DVAR 3DVAR analysis at 2002061301Z used as the initial condition, and boundary condition from NCEP GFS. Only Radar radial velocity at 2002061301Z assimilated (total data points = 97,033), 3 outer loops.
- 4DVAR 4DVAR analysis at 2002061301Z used as initial condition, and boundary condition from NCEP GFS. The radar radial velocity at 4 times: 200206130100, 05, 10, and 15, are assimilated (total data points = 384,304), 3 outer loops.

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

- TRUTH Initial condition from TRUTH (13-h forecast initialized at 2002061212Z from AWIPS 3-h analysis) run cutted by ndown, boundary condition from NCEP GFS data.
- NODA Both initial condition and boundary condition from NCEP GFS data.
- 3DVAR 3DVAR analysis at 2002061301Z used as the initial condition, and boundary condition from NCEP GFS. Only Radar radial velocity at 2002061301Z assimilated (total data points = 97,033), 3 outer loops.
- 4DVAR 4DVAR analysis at 2002061301Z used as initial condition, and boundary condition from NCEP GFS. The radar radial velocity at 4 times: 200206130100, 05, 10, and 15, are assimilated (total data points = 384,304), 3 outer loops.

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

OSSE 3rd hour precipitation simulation

Precipitation Tendency from 2002-06-13 03:00:00 to 2002-06-13 04:00:00 (mm)

Zhang and Huang Upgrades of

Upgrades of WRF 4D-Var V3.3

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

< ロト (同) (三) (三)

Remarks

- Obviously, 4DVar reproduce the best squall line precipitation band.
- However, the coverage and intensity of the precipitation are more than the observation.

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

< ロト (同) (三) (三)

Remarks

- Obviously, 4DVar reproduce the best squall line precipitation band.
- However, the coverage and intensity of the precipitation are more than the observation.
- Possible improvement: The WRFPLUS V3.3 is a dynamic-only dry model, PBL and microphysics are needed.

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var Real case

< ロト (同) (三) (三)

Remarks

- Obviously, 4DVar reproduce the best squall line precipitation band.
- However, the coverage and intensity of the precipitation are more than the observation.
- Possible improvement: The WRFPLUS V3.3 is a dynamic-only dry model, PBL and microphysics are needed.

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var **Real case**

<ロト <問ト < 回ト < 回ト

Experiment configration

- Grids: 105x72x28L
- Resolution: 60km
- Period: 2010091100-2010092600 @0Z,6Z,12Z,18Z
- First guess is the 12h forecast from NCEP FNL
- 48h forecasts from FG (control), 3DVAR and 4DVAR
- Verified against NCEP GDAS prepbufr data

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var **Real case**

Averaged RMSE of 24H forecast verification

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var **Real case**

Averaged RMSE of 36H forecast verification

Single observation experiment I Consider Lateral boundary condition as control variabl An OSSE radar data assimilation with WRF 4D-Var **Real case**

Averaged RMSE of 48H forecast verification

- The single executable WRF 4D-Var system was developed and has showed promising performance.
- The new WRF 4D-Var system has the capability to assimilate conventional observational data (little_r or prepbufr format),radiance in bufr format and radar data.

- The single executable WRF 4D-Var system was developed and has showed promising performance.
- The new WRF 4D-Var system has the capability to assimilate conventional observational data (little_r or prepbufr format),radiance in bufr format and radar data.
- The new WRF 4D-Var system is able to consider lateral boundary condition as control variable and digital filter can be used as a weak constraint to suppress the high frequency noise.

- The single executable WRF 4D-Var system was developed and has showed promising performance.
- The new WRF 4D-Var system has the capability to assimilate conventional observational data (little_r or prepbufr format),radiance in bufr format and radar data.
- The new WRF 4D-Var system is able to consider lateral boundary condition as control variable and digital filter can be used as a weak constraint to suppress the high frequency noise.
- Multiple outer loops for 4D-Var.

ロト 不得下 不足下 不足下

- The single executable WRF 4D-Var system was developed and has showed promising performance.
- The new WRF 4D-Var system has the capability to assimilate conventional observational data (little_r or prepbufr format),radiance in bufr format and radar data.
- The new WRF 4D-Var system is able to consider lateral boundary condition as control variable and digital filter can be used as a weak constraint to suppress the high frequency noise.
- Multiple outer loops for 4D-Var.

Development after V3.3

- Add simplified physics packages into WRFPLUS: surface drag(done), large scale condensation(done), a simplified cumulus scheme(done), as well as a radiation scheme (GSFC).
- Parallelization of WRF tangent linear codes (done)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Development after V3.3

- Add simplified physics packages into WRFPLUS: surface drag(done), large scale condensation(done), a simplified cumulus scheme(done), as well as a radiation scheme (GSFC).
- Parallelization of WRF tangent linear codes (done)
- Parallelization of WRF adjoint codes.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Development after V3.3

- Add simplified physics packages into WRFPLUS: surface drag(done), large scale condensation(done), a simplified cumulus scheme(done), as well as a radiation scheme (GSFC).
- Parallelization of WRF tangent linear codes (done)
- Parallelization of WRF adjoint codes.
- Multi-incremental 4D-Var configuration.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Development after V3.3

- Add simplified physics packages into WRFPLUS: surface drag(done), large scale condensation(done), a simplified cumulus scheme(done), as well as a radiation scheme (GSFC).
- Parallelization of WRF tangent linear codes (done)
- Parallelization of WRF adjoint codes.
- Multi-incremental 4D-Var configuration.
- Add precipitation observation to the forcing term.

- 4 周 ト - 4 ヨ ト - 4 ヨ ト

Development after V3.3

- Add simplified physics packages into WRFPLUS: surface drag(done), large scale condensation(done), a simplified cumulus scheme(done), as well as a radiation scheme (GSFC).
- Parallelization of WRF tangent linear codes (done)
- Parallelization of WRF adjoint codes.
- Multi-incremental 4D-Var configuration.
- Add precipitation observation to the forcing term.

Upcoming

A hand-on tutorial for WRF 4D-Var V3.3 will be presented on June 24, Friday morning 8:30AM-10:00AM

- Overview
- Installation
- Setup
- Run

A B K A B K

< 47 ▶

Thank You

The NESL Mission is: To advance understanding of weather, climate, atmospheric composition and processes; To provide facility support to the wider community; and, To apply the results to benefit society.

NCAR is sponsored by the National Science Foundation

Zhang and Huang Upgrades of WRF 4D-Var V3.3

<ロト <問ト < 回ト < 回ト