
 Mary Haley and Cindy Bruyère

Post-processing WRF-ARW data
with the NCAR Command Language

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Goals

•  Introduce you to NCL and WRF-NCL

•  Get you familiar with WRF-NCL scripts

•  Opening and examining a data file

•  Reading and querying variables

•  Plotting variables

•  Sneak in tips and information for existing
users

•  Overview
•  What’s new
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Debugging, common mistakes
•  Installation, setup, URLs

Topics

•  Developed in NCAR/CISL in
close collaboration with
CGD & MMM scientists

•  UNIX binaries and source
available, free

•  Extensive NCL website,
hundreds of examples

•  Hands-on workshops
•  Email lists for consulting

http://www.ncl.ucar.edu/

A scripting (interpreted) language tailored for the
analysis and visualization of geoscientific data

What is NCL?
•  A scripting language similar to Python or IDL

•  Tailored to climate and atmospheric sciences

•  Has variable types, “if-then-endif”, “do” loops,
arithmetic operators

•  F90-like array arithmetic that will ignore missing
values

•  Can call your own Fortran 77/90 or C routines

•  Simple, robust file input/output

•  Hundreds of data analysis routines

•  Publication-quality graphics that are highly
customizable

NCL: File input and output
•  Data model based on netCDF model (metadata

describes data)

•  One function reads all supported data formats:
− NetCDF, GRIB 1 and 2, HDF4, HDF-EOS2, HDF-

EOS5, shapefiles, (new: HDF5)

− Writes NetCDF and HDF4 (compressed NetCDF
too)

•  OPeNDAP-enabled client available

•  ASCII, binary (read and write)

http://www.ncl.ucar.edu/Applications/list_io.shtml

NCL: Data analysis

•  Array-based math
•  Hundreds of functions
-  WRF-ARW specific functions
-  Spherical harmonics
-  Scalar and vector regridding
-  Vertical interpolation
-  EOFs

•  Many tailored to geosciences
•  Most automatically handle missing data
•  Can call C and Fortran routines - WRAPIT

http://www.ncl.ucar.edu/Applications/list_dataP.shtml

NCL: Visualization

•  High-quality and customizable visualizations
•  Contours, XY, vectors, streamlines
•  Maps with common map projections
•  Handles data on regular and irregular

grids, triangular meshes
•  Specialized scripts for meteograms, skew-T, wind

roses, histograms, cross section, panels
•  wrf_xxxx functions: simplifies visualization

for WRF-ARW data
•  Over 1,400 visualization “options”

http://www.ncl.ucar.edu/gallery.shtml

NCL Training Workshops
-  First training workshop in 2000, 52 so far, 720+ attendees

-  3-4 local workshops a year
-  One free annual workshop at a UCAR member university
-  One invited international workshop

-  Lectures taught by a scientist and a software engineer
-  Includes special lecture on various data formats used in

geosciences
-  Four hands-on labs sessions; students encouraged to

bring their own datasets

August 16-19, 2011
University of Wyoming
Laramie, Wyoming
Bryan Shader – host

Funding to attend NCL Workshop

Deadline to apply: July 8, 2011

http://www.ncl.ucar.edu/Training/Workshops/

UW and NCAR/CISL will provide travel funds for
students and staff from EPSCoR states or

minority-serving institutions to attend.

A suite of analysis and visualization functions
tailored for WRF-ARW model data

•  Included with NCL
•  Developed by scientists in MMM
•  Maintained by Cindy Bruyère/MMM and

myself
•  Functions for calculating basic diagnostics
•  Functions for specialized visualizations –

precipitation, surface, vorticity,
meteograms, helicity, squall, dBZ, etc.

•  Website with lots of analysis and
visualization examples

•  Workshops and tutorials
•  Email list for consulting, wrfhelp@ucar.edu

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

WRF-NCL

Dr. Craig Mattocks,
Center for Environmental

Modeling for Policy
Development,

UNC-Chapel Hill

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/Examples/EXPERIMENTAL/wrf_wind_rose.htm

Experimental:
wind roses

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/Examples/SPECIAL/wrf_Vortex.htm

Uses shapefile data to mask data.
http://www.ncl.ucar.edu/Applications/shapefiles.shtml

Shapefiles from http://www.diva-gis.org/gdata

Plotting all fields in a GEO_EM file
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/Examples/GEO_EM/geo_em_2.htm

Other NCL visualizations

Image courtesy of Julie Arblaster
Bureau of Meteorology, University of Melbourne

Classification data example, courtesy of Dennis Shea, NCAR/CGD

Interpolating from a
higher resolution grid to a

lower resolution using
conservative remapping
courtesy Dennis Shea

NCAR/CGD

Evans plot - Created by Jason Evans of Univ of New South Wales.

 An Evans plot is a way to visualize spatially, two variables of interest,

one of which provides some measure of "importance".

Graphic by Jonathan Vigh, Postdoc @ NCAR

Based on a visualization
of Adam Phillips

A CICE T-fold
Tripole grid.

Data and tips for
plotting provided by

Petteri Uotila of
CSIRO Marine &

Atmospheric
Research

Victoria, Australia

CCMVal Workshop 2009  June 1-5, 2009

From John Ertl, FNMOC

John Fasullo, NCAR/CGD

CCMVal Workshop 2009  June 1-5, 2009

Triangular mesh from Tom
Gross

NOAA/NOS/CSDL/MMAP

Taylor diagram
Courtesy of

Dennis Shea and
Adam Phillips,

CGD

CCMVal Workshop 2009  June 1-5, 2009

Courtesy Mark Stevens
NCAR/CGD

Climate divisions are built into NCL and PyNGL

CCMVal Workshop 2009  June 1-5, 2009 Insert event desc here • Insert date here

Courtesy of
Jonathan Vigh

Post-doc, NCAR

NCL has support for shapefiles,
allowing you to use the

numerous free shapefiles for
adding your own map outlines

http://www.gadm.org

•  Overview
•  What’s new
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Debugging, common mistakes
•  Installation, setup, URLs

Topics

What’s new in NCL V6.0.0
•  Released May 30, 2011 (many months of beta testing)

•  Major overhaul: can now create larger than 2 GB
variables (on 64-bit systems)

 tc = wrf_user_getvar(f,”tc”,-1) ; tc can be > 2 GB!

•  Default missing values changed

•  Can delete multiple variables with “delete” command!
 slp = wrf_user_getvar(a,"slp",time)  
 tc2 = wrf_user_getvar(a,"T2",time)  
 u10 = wrf_user_getvar(a,"U10",time)  
 . . .  
 delete([/slp,tc2,u10/])!

•  Meaning of “byte” and “character” swapped,
(“unsigned byte” added as new type)

What’s new in NCL V6.0.0 (cont’d)
•  New functions

•  Lots of bug and memory fixes

•  New color tables

•  HDF5 reader (alpha testing)

What’s new – WRF specific
•  wrf_user_getvar, wrf_user_ij_to_ll, wrf_user_ll_to_ij,

wrf_user_list_times can now take direct input from variable
returned by addfiles variable:

fnames = systemfunc(“ls -1 wrfout*”) + “.nc”!
f = addfiles(fnames,”r”)!
slp = wrf_user_getvar(f,”slp”,-1)  

•  Experimental examples added to WRF-ARW online tutorial:
–  Moving nest domains
–  Wind roses

http://www.mmm.ucar.edu/wrf/OnLineTutorial/index.htm

•  In the pipeline: pressure/height interpolation code will be
able to extrapolate below ground

What’s coming in V6.1.0 & future
Next IPCC assessment

report will place heavy
demand on NCL
–  Extremely large datasets
–  Compute intensive

calculations
–  Comparing data from

different models and grids
–  NCL team in close dialog

with researchers to handle
these scalability issues

•  File input/output
−  HDF-EOS5, HDF5,

NetCDF 4 (native)
−  Better compression
−  Parallel NetCDF support

•  Computational
–  Faster algorithms
–  Specialized (ocean)

•  Visualization
–  “Quick-look” utility
–  Direct png and geotiff output
–  Support for flexible color

tables
–  Support for transparency
–  Vectors on a triangular mesh

Parvis – a three year DOE
project run by Argonne to

parallelize components of NCL
for ultra-large datasets

•  Overview
•  What’s new
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Debugging, common mistakes
•  Installation, setup, URLs

Topics

To “run” an NCL script:
•  Install NCL and set up environment

(covered later)

•  Make sure you have “~/.hluresfile”

•  Create a file using a UNIX editor that contains
NCL script commands, say, “myfile.ncl”.
Use examples on WRF-ARW online tutorial
for help!

•  Run the file on the UNIX command line with:

! !ncl myfile.ncl!

•  Look at output data or view graphical file!

Retrieves WRF variable

begin/end are optional

Open the file

array arithmetic, like f90

Use print/printVarSummary for debugging

This is like doing an “ncdump –h”

Comments begin with “;”
Either on line by itself, or end of line

load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl”  
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!

begin  
 print(“Hello, world”)  

; Open a netCDF file and print its contents!
 f = addfile(“wrfout_d01_2000-01-24_12:00:00.nc”,”r”) 
 print(f)!

; Read a variable and print its info!
 slp = wrf_user_getvar(f,”slp”,0)!
 printVarSummary(slp)!

 wrf_smooth_2d(slp, 3) ; Smooth slp  

 td2 = wrf_user_getvar(f,”td2”,0) ; td2 in C!
 td_f = 1.8 * td2 + 32. ; Convert to F!
 td_f@description = “Surface Dew Point Temp” !
 td_f@units = “F”  

. . . Maybe do some plotting. . .  
end !

To run this script (“wrf.ncl”) on UNIX command line, type:

 ncl wrf.ncl

Use “literals” to force type

; Explicit scalar assignment  

ndys = 30 ; integer  

x_f = 2983.599918 ; float!

pi = 3.14159265358979d ; double!

ll = 32676l ; long  

ishort = 10h ; short  

done = True ; logical (False)  

long_name = “Water Vapor” ; string!

Scalar variable assignment

New unsigned types introduced in NCL V5.2.1 and 6.0.0

Mixing types
; Mixing types, “largest” type used  
i = 7/10 ; integer (i=0)  
x = 7/10. ; float (x=0.7)!

y = (22./7)/2d ; double (1.571428537368774)!

z = (i+5) * x ; float (z=3.5)!

; Use “+” for string concatenation  
s1 = “hello”  
s2 = “world”  
s3 = s1 + “, “ + s2 ; s3 = “hello, world”  

j = 2 ; Can mix strings and numerics  
s = “var_“ + (j+1) + “_f” ; s = “var_3_f”!

Type conversions

; Can’t change to “higher” type; use delete  
ff = 1.5e20 ; float  
ff = 1000 ; this is ok, still a float  
ff = 1d36 ; not okay, “type mismatch”!

delete(ff)  
ff = 1d36 ; double!

; Use conversion functions to change to  
; “lower” type  

dx = 345.789d ; double  
fx = tofloat(dx) ; 345.789  
ix = tointeger(dx) ; 345!

Old ones were “doubletofloat”, “floattoint”, etc.

Note about “tointeger” issue in WRFUserARW.ncl

•  Row major. . . like C/C++ (Fortran is column major)

•  Leftmost dimension varies the slowest,
rightmost varies fastest (this matters for speed)

•  Dimensions are numbered left to right (0,1,…)

•  Use “dimsizes” function to get dimension sizes

•  Indexes (subscripts) start at 0 (0 to n-1)

•  Use parentheses to access elements:
dx = x(2) – x(1) ; 3rd value minus 2nd value  

; Assume Y is 3D (nx,ny,nz)!
y1 = y(0,0,0) ; first value of array!
yn = y(nx-1,ny-1,nz-1) ; last value of array!

Arrays

; 1D float array, 3 elements  
lat = (/-80,0.,80/)  

; string array, 4 elements  
MM = (/”March”,”April”,”May”,”June”/)!

; 3 x 2 double array  
z = (/(/1,2d/),(/3,4/),(/9,8/)/)!

Array assignment: (/. . ./)

; Create 3D double array, 10 x 64 x 128  
x = new((/10,64,128/),double)!

; Will be filled with 9.969209968386869e+36!

; Very useful “where” function  
 q = where(z.gt.pi .and. z.lt.pi2, pi*z, 0.5*z)  

Special functions for arrays

; “num”, “any”, “all”  

 npos = num (xTemp.gt.0.0)  

 if (.not.any(string_array.eq.”hello world”)) then  
 do something  
 end if!

 if (all(xTemp.lt.0)) then  
 do something  
 end if!

; “ind” function, only on 1D arrays  
 ii = ind(pr.lt.500 .and. pr.gt.60)  

“where” is usually
better than “ind”

Metadata
•  Metadata is information about variables or files.

•  In NetCDF-land, metadata consists of:

–  Attributes – describes the file or variable (units,
history, grid type, long name, map projection)

–  Named dimensions – describes the dimensions
(“time”, “lat”, “lon”, “levels”)

–  Coordinate arrays – provides coordinate locations of
data (must be one-dimensional)

•  WRF-ARW data doesn’t normally have traditional
1D coordinate arrays. WRF coordinates are
generally 2D or 3D and called XLAT/XLONG

Metadata (continued)
•  The “_FillValue” attribute is a special one

indicating a variable’s missing value.

•  When you do an “ncdump -h” or “ncl_filedump”
on a NetCDF file, you see all the metadata

•  NCL variables are based on this metadata
model. Even if you read in a GRIB, HDF, or
shapefile, it will “look” like a NetCDF file with
attributes, named dimensions, and possibly
coordinate arrays.

Missing values (_FillValue attribute)
•  “_FillValue” is a special NetCDF and NCL reserved attribute for

missing values

•  Most NCL functions ignore _FillValue:
x = (/1,2,3,-999,5/) ; no msg val yet  
xavg = avg(x) ; = -197.6  
x@_FillValue = -999 ; now has a msg val  
xavg = avg(x) ;(1+2+3+5)/4 = 2.75  

•  Must be same as type of variable

•  “missing_value” attribute has no special status to NCL.
If “T” has “missing_value” attribute and no “_FillValue”:

 T@_FillValue = T@missing_value!
•  Best not to use zero as a _FillValue

“print” / “printVarSummary”
will print _FillValue value.

“print” is very verbose

Use ‘@’ to reference attributes

“default_fillvalue” – returns default missing
value for the given type
“set_default_fillvalue” – change the default
missing value for the given type

NCL default missing values
NCL type Old New Special Note

integer -999 -2147483647

float -999. 9.96921e+36
double -9999. 9.969209968386869e+36

string “missing” “missing”

short -99 -32767
byte 0xff -127 now signed

ubyte --- 255 (new in 6.0.0)
unsigned

character 0 0x00 now unsigned

logical Missing Missing

fmsg = default_fillvalue(“float”)!

Missing value functions
•  Use any, all, and ismissing functions to query a

variable for missing values:
 if (.not.any(ismissing(T))) then  
 do something  
 end if  
 if (all(ismissing(T))) then  
 do something  
 end if!

•  Use num & ismissing to count missing values:
 nmsg = num(ismissing(T))!

•  Use the new “default_fillvalue” and
“set_default_fillvalue” if needed

; Use “isatt” to test for an attribute first.  
if(isatt(uvmet,”units”)) then  
 print(“The units of uvmet are ‘” + uvmet@units + “’”)  
end if!

(0) The units of uvmet are ‘m s-1’  

File and variable attributes

; Use the “@” symbol to get at variable attributes too. 
uvmet = wrf_user_getvar(f, “uvmet”, 0)  
print(uvmet@units) ; “m s-1”  
print(uvmet@description) ; “u,v met velocity”!

; Use the “@” symbol to get at global file attributes. 

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
print(f@TITLE) ; “OUTPUT FROM WRF V2.1.2 MODEL”  
print(f@START_DATE) ; “2005-08-26_00:00:00”  
print(f@MAP_PROJ) ; 3  

; Can do arithmetic like Fortran 90  
 ch4 = ch4 * 1e6 ; convert to ppm, assign to same var  

 A = data_DJF - data_JJA ; data_DJF/data_JJA must be same size  

 zlev = (-7*log(lev/10^3)) ; evaluated as  
 ; (-7)*log(lev/(10^3))!

Arithmetic operations on arrays, like f90

•  May not need to loop over arrays to do calculations
•  Arrays need to be same size, but scalars can be used any time
•  Highest “type” will be assigned to variable on left of “=”

; Use “conform” to promote an array  
; “Twk” is (time,lat,lon,lev), “ptp” is (lat,lon)  

 ptropWk = conform(Twk, ptp, (/1,2/)) ; time,lat,lon,lev  

Metadata not copied to A or zlev

Array reorder, reshape, reverse

; Reshaping an array  

 t1D = ndtooned(T) ; Convert to 1D array  
 t2D = onedtond(t1D, (/N,M/)) ; Convert to N x M array!

; Reversing dimensions of an array  

; Let T(lev,lat,lon)  
 T = T(::-1,:,:) ; Will reverse coordinate array too!

http://www.ncl.ucar.edu/Document/Functions/array_manip.shtml

Functions for manipulating arrays

; Reordering an array  

; Let T(time,lat,lon)  
 t = T(lat|:,lon|:,time|:) ; Can’t assign to same var!

Requires named dimensions be present

Array Subscripting
•  Three kinds of array subscripting

1.  Index (uses ‘:’ and ‘::’)
2.  Coordinate (uses curly braces ‘{‘ and ‘}’)
3.  Named dimensions (uses ‘!’)

•  Most WRF-ARW data does not have
coordinate arrays, so can’t use #2

•  You can mix subscripting types in one
variable

•  Be aware of dimension reduction
•  Index subscripting is 0-based

(Fortran by default is 1-based)
http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclVariables.shtml#Subscripts

Array index subscripting, : and ::

; Consider T(ntime x nlat x nlon)  
 t = T! ; copies metadata, don’t use T(:,:,:)  
 t = (/T/) ; doesn’t copy metadata  
 ; (_FillValue is retained)  

; The following creates 2D array “t”  
 t = T(0,:,::5) ; 1st time index, all lat, every 5th lon  
 ; (nlat x nlon/5)  

 t = T(0,::-1,:50) ; 1st time index, reverse lat,  
 ; first 51 lons (nlat x 51)  

 t = T(:1,45,10:20) ; 1st two time indices, 46th index of lat,  
 ; 11th-21st indices of lon (2 x 11)  

; To prevent dimension reduction  
 t = T(0:0,:,::5) ; 1 x nlat x nlon/5  
 t = T(:1,45:45,10:20) ; 2 x 1 x 21  

•  Overview
•  What’s new
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Debugging, common mistakes
•  Installation, setup, URLs

Topics

WRF files don’t have “.nc” suffix; must add here.

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
print(f)!

Opening and examining a WRF output file

Variable: f (file variable)!

filename: wrfout_d01_2005-08-27_00:00:00!
path: wrfout_d01_2005-08-27_00:00:00!
 file global attributes:!
 TITLE : OUTPUT FROM WRF V2.1.2 MODEL!
 START_DATE : 2005-08-26_00:00:00!
 SIMULATION_START_DATE : 2005-08-26_00:00:00!
 WEST-EAST_GRID_DIMENSION : 400!
 SOUTH-NORTH_GRID_DIMENSION : 301!
 BOTTOM-TOP_GRID_DIMENSION : 35!
 DX : 12000!
 DY : 12000!
 GRIDTYPE : C!
 DYN_OPT : 2!
 DIFF_OPT : 1 KM_OPT : 4!
 DAMP_OPT : 0!

print(f) results

global attributes

 KHDIF : 0!
 KVDIF : 0!
 MP_PHYSICS : 3!
 RA_LW_PHYSICS : 1!
 RA_SW_PHYSICS : 1!
 SF_SFCLAY_PHYSICS : 1!
 SF_SURFACE_PHYSICS : 1!
 BL_PBL_PHYSICS : 1!
 CU_PHYSICS : 1!
 WEST-EAST_PATCH_START_UNSTAG : 1!
 WEST-EAST_PATCH_END_UNSTAG : 399!
 WEST-EAST_PATCH_START_STAG : 1!
 WEST-EAST_PATCH_END_STAG : 400!
 SOUTH-NORTH_PATCH_START_UNSTAG : 1!
 SOUTH-NORTH_PATCH_END_UNSTAG : 300!
 SOUTH-NORTH_PATCH_START_STAG : 1!
 SOUTH-NORTH_PATCH_END_STAG : 301!
 BOTTOM-TOP_PATCH_START_UNSTAG : 1!
 BOTTOM-TOP_PATCH_END_UNSTAG : 34!
 BOTTOM-TOP_PATCH_START_STAG : 1!
 BOTTOM-TOP_PATCH_END_STAG : 35 !
 GRID_ID : 1!
 PARENT_ID : 0!
 I_PARENT_START : 0!
 J_PARENT_START : 0!
 PARENT_GRID_RATIO : 1!
 DT : 60!

print(f) results
(continued)

more global attrs

. . .!
 dimensions:!
 Time = 1 // unlimited!
 DateStrLen = 19!
 west_east = 399!
 south_north = 300!
 west_east_stag = 400!
 bottom_top = 34!
 south_north_stag = 301!
 bottom_top_stag = 35!
 ext_scalar = 1!
 soil_layers_stag = 5!
 variables:!
 character Times (Time, DateStrLen)!

 float LU_INDEX (Time, south_north, west_east)!
 FieldType : 104!
 MemoryOrder : XY !
 description : LAND USE CATEGORY!
 units : !
 stagger : !

 float U (Time, bottom_top, south_north, west_east_stag)!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : x-wind component!
 units : m s-1!
 stagger : X!

print(f) results
(continued)

variable dimension names

variables

 float V (Time, bottom_top, south_north_stag, west_east)!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : y-wind component!
 units : m s-1!
 stagger : Y!

 float W (Time, bottom_top_stag, south_north, west_east)!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : z-wind component!
 units : m s-1!
 stagger : Z!

 float PH (Time, bottom_top_stag, south_north, west_east)!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : perturbation geopotential!
 units : m2 s-2!
 stagger : Z!

 float PHB (Time, bottom_top_stag, south_north, west_east)!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : base-state geopotential!
 units : m2 s-2!
 stagger : Z!

print(f) results
(continued)

more variables

Using “ncl_filedump” on UNIX command line

Don’t need to write a script to quickly look at a WRF file.
On the UNIX command line, type:
ncl_filedump –h!

ncl_filedump wrfout_d01_2005-08-27_00:00:00.nc!

ncl_filedump –v RAINC wrfout_d01_2005-08-27_00:00:00.nc  

Can use ncl_filedump on other files that NCL’s “addfile”
supports: GRIB 1 and 2, HDF4, HDF-EOS2, etc

ncl_filedump TES-Aura_L3-ATM-TEMP_r0000003459_F01_05.he5  

ncl_filedump z_tigge_c_rjtd_20061119120000_0072_sl_glob_prod.grb2  

ncl_filedump states.shp!

Two ways to read a variable off a file

•  Use “->” syntax

•  Use “wrf_user_getvar” function
– Developed to make it easier to get derived

variables
–  It is an NCL script function, so must load

“WRFUserARW.ncl” script
– You can modify this script (more later)
– Only use with WRF-ARW data

named dimensions

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
u = f->U  
printVarSummary(u)  
; print(u) ; Same as printVarSummary, but includes values!

Reading (and examining) a variable off a file (method 1)

Variable: u!
Type: float!
Total Size: 16320000 bytes!
 4080000 values!
Number of Dimensions: 4!
Dimensions and sizes: [Time | 1] x [bottom_top | 34] x [south_north
| 300] x [west_east_stag | 400]!
Coordinates: !
Number Of Attributes: 5!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : x-wind component!
 units : m s-1!
 stagger : X!

printVarSummary(u) results

no coordinate arrays

variable attributes

load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl”  
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
slp = wrf_user_getvar(f,”slp”,0)  
printVarSummary(slp)!

Reading (and examining) a variable off a file (method 2)

Variable: slp!
Type: float!
Total Size: 478800 bytes!
 119700 values!
Number of Dimensions: 2!
Dimensions and sizes: [south_north | 300] x [west_east | 399]!
Coordinates: !
Number Of Attributes: 5!
 description : Sea Level Pressure!
 units : hPa!
 FieldType : 104!
 MemoryOrder : XYZ!
 stagger :!

printVarSummary(slp) results

load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl”  
load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
slp = wrf_user_getvar(f,"slp",0)  

print(dimsizes(slp)) ; Print dimension sizes of slp  
print(min(slp)) ; Print minimum of slp  
print(max(slp)) ; Print maximum of slp  
print(typeof(slp)) ; Print type of slp  
print(getvaratts(slp)) ; Print attributes of slp!

Further querying a variable

; Can assign to variables  
dims = dimsizes(slp)  
slp_min = min(slp)  
slp_max = max(slp)  
attrs = getvaratts(slp)  
slp_avg = avg(slp)!

Most of above info is
printed as part of
printVarSummary

procedure

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
td2 = wrf_user_getvar(f,”td2”,0) ; Units are “C”  

td_f = 1.8 * td2 + 32. ; Can operate on whole array  
td_f@units = “F” ; Add some attributes  
td_f@description = “Surface Dew Point Temp”!

Creating a new variable & adding attributes

; To write new variable to an existing file 
f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”w”)  
. . .  
f->td_f = td_f ; Write “td_f” to same file!

; To preserve metadata  
td_f = td2 ; Easy way to copy metadata, can be expensive  
td_f = 1.8 * td2 + 32  
td_f@description = “Surface Dew Point Temperature”  
td_f@units = “F”  
printVarSummary(td_f)!

•  Overview
•  What’s new
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Debugging, common mistakes
•  Installation, setup, URLs

Topics

WRF-NCL Functions
•  Two kinds:
−  Built-in - mainly functions to calculate diagnostics.

Seldom need to use these directly.

 slp = wrf_slp(z, tk, P, QVAPOR)  

−  “WRFUserARW.ncl” - developed to make it
easier to calculate derived variables and generate
plots, calls some built-in functions

 load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!
 slp = wrf_user_getvar(f,”slp”,time)  

http://www.ncl.ucar.edu/Document/Functions/wrf.shtml

Can use NCL built-in functions, in place of wrf_user_getvar,
not always recommended!
 T = f->T(time,:,:,:)  
 P = f->P(time,:,:,:)  
 PB = f->PB(time,:,:,:)  
 QVAPOR = f->QVAPOR(time,:,:,:)  
 PH = f->PH(time,:,:,:)  
 PHB = f->PHB(time,:,:,:)  
 T = T + 300.  
 P = P + PB  
 QVAPOR = QVAPOR > 0.0 ; Set anything <= 0 to msg  
 PH = (PH + PHB) / 9.81  

 z = wrf_user_unstagger(PH,PH@stagger)  
 tk = wrf_tk(P , T)  
 slp = wrf_slp(z, tk, P, QVAPOR)!

WRF-NCL built-in functions

 slp = wrf_user_getvar(f,”slp”,time)!

Replace with single call

WRF-NCL “WRFUserARW.ncl” functions
wrf_user_getvar - Get fields from input file

ter = wrf_user_getvar(a,”HGT”,0)  
t2 = wrf_user_getvar(a,”T2”,-1)  
slp = wrf_user_getvar(a,”slp”,1)

Diagnostics
avo/pvo Absolute/Potential Vorticity
cape_2d 2D mcape/mcin/lcl/lfc
cape_3d 3D cape/cin
dbz/mdbz Reflectivity
geopt/geopotential Geopotential
p/pres/pressure Pressure
rh/rh2 Relative Humidity
slp Sea Level Pressure
td/td2 Dew Point Temperature
tc/tk Temperature
th/theta Potential Temperature
ua/va/wa Wind on mass points
uvmet/uvmet10 U/V components of wind rotated to earth coords
z/height Height

wrf_user_getvar
is user-modifiable!

(more later)

http://www.ncl.ucar.edu/Document/Functions/WRF_arw/

•  wrf_user_list_times
Get list of times available in input file
times = wrf_user_list_times (f)!

•  wrf_user_unstagger
Unstaggers an array
ua = wrf_user_unstagger (U, “X”)  
ua = wrf_user_getvar(f,”ua”,time) !

•  wrf_map_overlays
Draws plots over a map background
map = wrf_map_overlays(a, wks, \!

 (/contour,vector/), pltres, mpres)!

Other WRF-NCL “WRFUserARW.ncl” functions

•  wrf_user_intrp3d
Interpolate horizontally to a given pressure or height level
Interpolate vertically (pressure/height), along a given line
tc_plane = wrf_user_intrp3d(tc, p, ”v”, (/30,25/), \  
 45., False)!

•  wrf_user_intrp2d
Interpolate along a given line
t2_plane = wrf_user_intrp2d(t2, (/12,10,25,45/), \  
 0., True)!

Other WRF-NCL “WRFUserARW.ncl” functions

•  wrf_user_ll_to_ij / wrf_user_ij_to_ll
Convert: lat/lon ij

locij = wrf_user_ll_to_ij (f, 100., 40., res)  
locll = wrf_user_ij_to_ll (f, (/10, 12/), \  
 (/40, 50/), res)

res@useTime - Default is 0
Set to a time index value if you want the reference
longitude/latitudes to come from a different time index -
only use this for moving nest output which has been
stored in a single file.

res@returnInt - Default is True
If set to False, the return values will be real.

 (wrf_user_ll_to_ij only)

Other WRF-NCL “WRFUserARW.ncl” functions

Modifying wrf_user_getvar function
•  Copy the following file to your own directory:

“$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”

•  Edit your copy and look for line that starts with:
function wrf_user_getvar  

•  Before the lines:
 return(var)  
end  

Add these lines, replacing “newvar” as appropriate:
if(variable .eq. ”newvar”) then  
 . . .fill in code here. . .  
 return(newvar)  
end if

Modifying wrf_user_getvar function (cont’d)
•  To use the new version of this function, you can do one

of two things:
1.  Load your modified script instead of the system one:

2.  Remove all but the modified “wrf_user_getvar” function from
your copy, rename the function (“wrf_user_getvar2”), and
rename the file (“my_new_script.ncl”). To use the new
function, you need to load the above script and your new
script:

load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”  
load “./my_new_script.ncl”!

xxx = wrf_user_getvar2(f,”XXX”,0)!

load “./WRFUserARW.ncl”  
xxx = wrf_user_getvar(f,”XXX”,0)!

•  Overview
•  What’s new
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Debugging, common mistakes
•  Installation, setup, URLs

Topics

•  WRF-ARW online tutorial
http://www.mmm.ucar.edu/wrf/OnLineTutorial/index.htm

•  NCL/WRF examples page
http://www.ncl.ucar.edu/Applications/wrf.shtml

NCL Home Page -> Examples -> WRF

•  Description of WRF-NCL functions
http://www.ncl.ucar.edu/Document/Functions/wrf.shtml

NCL Home Page -> Functions -> Category -> WRF

Links for visualization scripts

Step-by-step WRF-ARW visualizations

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

These are plot options, also known as “resources”

; Set some plotting resources!
res = True  
res@cnFillOn = True  

; These are special wrf_xxxx resources  
res@MainTitle = "GEOGRID FIELDS”  
res@ContourParameters = (/ 250., 3500., 100. /)  
contour = wrf_contour(f,wks,hgt,res)!

pltres = True!
mpres = True!
plot = wrf_map_overlays(f,wks,contour,pltres,mpres)!

; Load the necessary scripts  
load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl”  
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!

; Open a file and read a variable  
f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
hgt = wrf_user_getvar(f,”HGT”,0)"

wks = gsn_open_wks(“ps”,”hgt”) ; “hgt.ps”"

Step-by-step: filled contours using wrf_xxxx

wrf_map_overlays looks at file to determine map projection

. . .  

slp = wrf_user_getvar(f,"slp",0)  
t2 = wrf_user_getvar(f,"T2",0)  
u10 = wrf_user_getvar(f,"U10",0)  
v10 = wrf_user_getvar(f,"U10",0)  

wks = gsn_open_wks(“ps”,”wrf”) ; Open “wrf.ps” file for output!

; Line contours  
os = True  
os@cnLineColor = “NavyBlue”  
os@cnLineThicknessF = 2.0  
c_slp = wrf_contour(f,wks,slp,os)  

; Filled contours  
ot = True  
ot@cnFillOn = True  
c_tc = wrf_contour(f,wks,t2,ot)!

; Vectors  
ov = True  
ov@NumVectors = 47  
vec = wrf_vector(f,wks,u10,v10,ov)  

; Overlay everything on a map  
mpres = True  
pltres = True  
plot = wrf_map_overlays(f,wks,(/c_tc,c_slp,vec/),pltres, mpres)!

Step-by-step: line/fill contours, vectors

wrf_contour/wrf_vector
Create line/shaded/filled contours and vectors

opts@MainTitle Main title on the plot
opts@MainTitlePos Main title position (default=left)
opts@NoHeaderFooter Turn off headers & footers (default=False)
opts@Footer Add model information as a footer (default=True)
opts@InitTime Plot initial time on graphic (default=True)
opts@ValidTime Plot valid time on graphic (default=True)
opts@TimeLabel Label to use for valid time
opts@TimePos Time position (default=right)
opts@ContourParameters Contour parameters
opts@FieldTitle Overwrite the field title
opts@UnitLabel Overwrite the field units
opts@PlotLevelID Add level information to field title
opts@NumVectors Density of wind vector (wrf_vector) (default=25)

contour = wrf_contour(f, wks, ter, copts)  
vector = wrf_vector(f, wks, u, v, vopts)!

opts@MainTitle
opts@MainTitlePos

opts@NoHeaderFooter
opts@Footer

opts@InitTime
opts@ValidTime
opts@TimeLabel
opts@TimePos

Resources for
wrf_contour &
wrf_vector

wrf_map_overlays/wrf_overlays
Overlay plots created with wrf_contour and wrf_vector

•  mpres@mpGeophysicalLineColor; mpres@mpNationalLineColor;
mpres@mpUSStateLineColor; mpres@mpGridLineColor;
mpres@mpLimbLineColor; mpres@mpPerimLineColor

•  To zoom in, set:
mpres@ZoomIn = True, and
mpres@Xstart, mpres@Xend, mpres@Ystart, mpres@Yend, to the
corner x/y positions of the zoomed plot.

•  pltres@NoTitles Turn off all titles
•  pltres@CommonTitle Common title
•  pltres@PlotTitle Plot title
•  pltres@PanelPlot Whether a panel plot is to be drawn
•  pltres@FramePlot Whether to advance the frame

plot = wrf_map_overlays (f, wks, (/contour,vector/), \  
 pltres, mpres)  
plot = wrf_overlays (f, wks, (/contour,vector/), \  
 pltres)!

t2 = wrf_user_getvar(a,"T2",5)
t2@description = "Surface Temperature”

Resources for
wrf_overlays

pltres@NoTitles
pltres@CommonTitle

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

Scripts maintained by
Cindy Bruyère.

Latest version of
WRFUserARW.ncl file
usually available here.

Scripts and full-sized
images available.

More info on plot resources
•  The special WRF-NCL graphical

functions have special resources they
recognize

•  Most general NCL resources can also
be used to tweak plots (some are set
internally and can’t be changed)

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_functions.htm

http://www.ncl.ucar.edu/Document/Graphics/Resources/

•  Overview
•  What’s new
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Debugging, common mistakes
•  Installation, setup, URLs

Topics

Calling Fortran codes from NCL
•  Easier to use F77 code, but works with F90 code

•  Need to isolate definition of input variables and wrap with
special comment statements:

 C NCLFORTSTART  
 C NCLEND!

•  Use a tool called WRAPIT to create a *.so file

•  Load *.so file in NCL script with “external” statement

•  Call Fortran function with special “::” syntax

•  Must preallocate arrays! (using NCL’s “new” statement)

http://www.ncl.ucar.edu/Document/Tools/WRAPIT.shtml

Example F77 code: myTK.f

 subroutine compute_tk(tk,pressure,theta,nx,ny,nz)  
 implicit none  
 integer nx, ny, nz  
 real tk(nx, ny, nz)  
 real pressure(nx, ny, nz), theta(nx, ny, nz)  

 integer i, j, k  
 real pi  

 do k=1,nz  
 do j=1,ny  
 do i=1,nx!
 pi = (pressure(i,j,k)/1000.)**(287./1004.)  
 tk(i,j,k) = pi*theta(i,j,k)!
 end do!
 end do!
 end do!
 end!

C NCLFORTSTART

C NCLEND

Create “myTK.so” file and use in script
 % WRAPIT myTK.f!

This will create a “myTK.so” file

load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl” !!
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”  
external myTK “./myTK.so” !!

begin!

!t = wrf_user_getvar(a,”T”,5)  

!t = t + 300!
!p = wrf_user_getvar(a,”pressure”,5)  

; Must preallocate space for output arrays"

!dim = dimsizes(t)!
 tk = new(dimsizes(t), typeof(t))  

; Remember, Fortran/NCL arrays are ordered differently"
 myTK :: compute_tk (tk,p,t,dim(2),dim(1),dim(0))!
end!

Calling Fortran 90 codes from NCL
•  Can use simple Fortran 90 code

•  Your F90 program cannot contain any of the
following features:

– pointers or structures as arguments
– missing or optional arguments
– keyword arguments
–  recursive procedures

•  The input arguments must be reproduced in a
separate F77-like “stub” file

•  “WRAPIT” is a modifiable script

myTK.f90
subroutine compute_tk (tk, pres, theta, nx, ny, nz)  
 implicit none  
 integer :: nx,ny,nz  
 real, dimension (nx,ny,nz) :: tk, pres, theta, pi  

 pi = (pres/1000.)**(287./1004.)  
 tk = pi * theta  

end subroutine compute_tk !

Example F90 code: myTK.f90

myTK.f90
subroutine compute_tk (tk, pres, theta, nx, ny, nz)  
 implicit none  
 integer :: nx,ny,nz  
 real, dimension (nx,ny,nz) :: tk, pres, theta, pi  

 pi = (pres/1000.)**(287./1004.)  
 tk = pi * theta  

end subroutine compute_tk !

myTK.stub
C NCLFORTSTART  
 subroutine compute_tk (tk, pres, theta, nx, ny, nz)  
 implicit none  
 integer nx,ny,nz  
 real tk(nx,ny,nz)  
 real pres(nx,ny,nz), theta(nx,ny,nz)  
C NCLEND

Example F90 code: myTK.f90 + stub

Create “myTK.so” file and use in script
 % WRAPIT myTK.stub myTK.f90!

Should create a “myTK.so” file. Script will be exactly the same.

load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl" !!
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”  
external myTK “./myTK.so” !!

begin!

!t = wrf_user_getvar(a,”T”,5)  

!t = t + 300!
!p = wrf_user_getvar(a,”pressure”,5)  

; Must preallocate space for output arrays"

!dim = dimsizes(t)!
 tk = new(dimsizes(t), typeof(t))!

 myTK :: compute_tk (tk,p,t,dim(2),dim(1),dim(0))!
end!

•  Overview
•  What’s new
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Debugging, common mistakes
•  Installation, setup, URLs

Topics

Common mistakes or problems
•  Forgot .hluresfile (colors and fonts will look wrong)

•  Call wrf_xxxx functions with the wrong units

•  “cnLineColour” is not a resource in ContourPlot at this time”

–  Misspelling a resource, “cnLineColour”

–  Using the wrong resource with the wrong plot (i.e. using
“vcRefMagnitudeF” in a contour plot).

•  Data values in plot look off-scale

–  Maybe “_FillValue” attribute not set or not correct.

Debugging tips
•  Start with an existing script, if possible

•  Use indentation (even though not needed)

•  Use “ncl_filedump” to look at file quickly

•  Use “printVarSummary” to examine variables

–  Check for no “_FillValue” or wrong “_FillValue” value

•  To further examine data, use:

–  print(min(x)) and print(max(x)) ; Minimum/maximum of data

–  print(num(ismissing(x))) ; Count number of msg vals

•  For graphics, make sure spelling the resource name correctly

•  Group graphical resources alphabetically

•  Read errors and warnings carefully!

Things to watch for: memory & efficiency

•  Nested do loops, unnecessary code in do loops

–  Try to use f90-style arithmetic where possible

–  If code doesn’t need to be in do loop (like initializing a variable),
move it outside the loop

•  Copying metadata unnecessarily. Use (/ and /) to avoid this:

 ch4_tmp = (/ch4/) !

•  Creating lots of big arrays and not deleting them when no
longer needed. Use NCL’s “delete” procedure to clean up.

•  Reordering the same array multiple times

–  Do once and store to local variable

•  Overview
•  What’s new
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Debugging, common mistakes
•  Installation, setup, URLs

Topics

Installing NCL and setting up environment

•  ESG one-time registration (login/password)

•  Download appropriate precompiled binary

•  “gunzip” and “tar –xvf” the file

•  setenv NCARG_ROOT to parent directory

•  Add $NCARG_ROOT/bin to search path

•  Copy “.hluresfile” to home directory

http://www.ncl.ucar.edu/Download/install.shtml

http://www.ncl.ucar.edu/Download/

Problems installing or running NCL?

•  Send email to ncl-install@ucar.edu
(must subscribe first):
http://mailman.ucar.edu/mailman/listinfo/ncl-install

•  Be specific about problem:

–  What kind of machine (“uname –a”)

–  Which version of NCL, or which file did you
download?

–  What exactly is the problem? Include what you are
trying to do, and exactly what error message you
got.

Customizing your NCL graphics environment

•  Download “.hluresfile” file, put in home directory!!

–  Changes your background, foreground colors to white/
black

–  Changes font from times-roman to helvetica!

–  Changes “function code” (default is a colon)"

–  WRF-NCL users: use to change the default color map"

http://www.ncl.ucar.edu/Document/Graphics/hlures.shtml

~/.hluresfile

Sample “.hluresfile”

*wkForegroundColor : black!

*wkBackgroundColor : white!

*wkColorMap : BlAqGrYeOrReVi200!

*Font : helvetica !

*TextFuncCode : ~ !

*wkWidth : 900!

*wkHeight : 900

With and without a “.hluresfile”

without
with

Useful URLS
•  Online WRF-NCL Graphics Tutorial

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

•  WRF-NCL functions (built-in and “WRFUserARW.ncl”)
http://www.ncl.ucar.edu/Document/Functions/wrf.shtml

•  Graphical resources
http://www.ncl.ucar.edu/Document/Graphics/Resources/

•  Download NCL
http://www.ncl.ucar.edu/Download/

•  Application examples (includes WRF examples)
http://www.ncl.ucar.edu/Applications/

•  Detailed NCL reference manual
http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/

•  NCL Workshops
http://www.ncl.ucar.edu/Training/Workshops/

•  NCL email lists to join
http://www.ncl.ucar.edu/Support/email_lists.shtml

wrfhelp@ucar.edu

Questions specific to WRF-NCL

ncl-talk@ucar.edu
Issues with NCL (must subscribe first)

http://mailman.ucar.edu/mailman/admin/ncl-talk

Questions?

