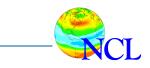

Post-processing WRF-ARW data with the NCAR Command Language

Mary Haley and Cindy Bruyère

12th Annual WRF Users' Event, June 20-24, 2011

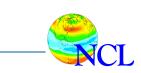

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Goals

- Introduce you to NCL and WRF-NCL
- Get you familiar with WRF-NCL scripts
 - Opening and examining a data file
 - Reading and querying variables
 - Plotting variables

NCAR

Sneak in tips and information for existing users



Topics

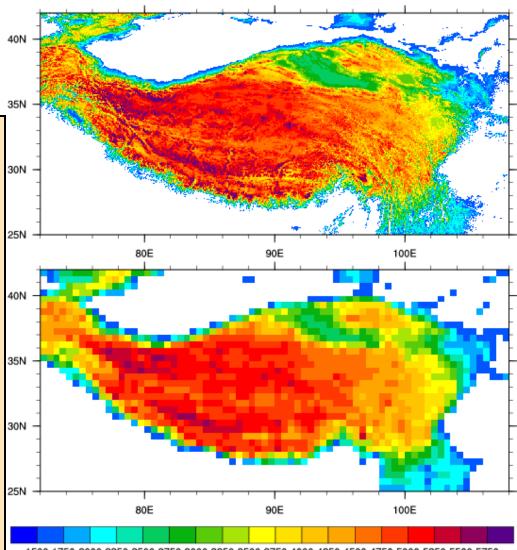
- Overview
- What's new
- NCL language basics
- File input/output
- Data Analysis
- Visualization
- Calling Fortran code from NCL
- Debugging, common mistakes
- Installation, setup, URLs NCAR

NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

A scripting (interpreted) language tailored for the analysis and visualization of geoscientific data

 Developed in NCAR/CISL in close collaboration with CGD & MMM scientists

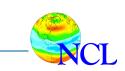
NCAR Command Language


- UNIX binaries and source available, free
- Extensive NCL website, hundreds of examples
- Hands-on workshops
- Email lists for consulting

http://www.ncl.ucar.edu/

NGDC, ETOPO2 Global 2' Elevations: Tibet: 1500

1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000 5250 5500 5750

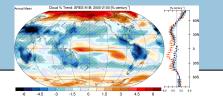

What is NCL?

- A scripting language similar to Python or IDL
- Tailored to climate and atmospheric sciences
- Has variable types, "if-then-endif", "do" loops, arithmetic operators
- F90-like array arithmetic that will ignore missing values
- Can call your own Fortran 77/90 or C routines
- Simple, robust file input/output
- Hundreds of data analysis routines
- Publication-quality graphics that are highly customizable

NCL: File input and output

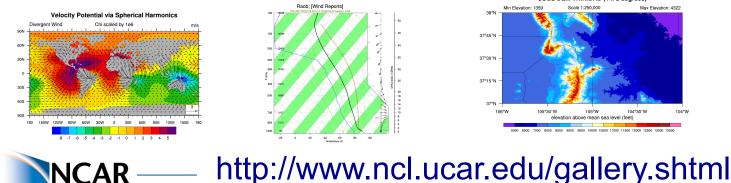
- Data model based on netCDF model (metadata describes data)
- One function reads all supported data formats:
 - NetCDF, GRIB 1 and 2, HDF4, HDF-EOS2, HDF-EOS5, shapefiles, (new: HDF5)
 - Writes NetCDF and HDF4 (compressed NetCDF too)
- OPeNDAP-enabled client available
- ASCII, binary (read and write)

http://www.ncl.ucar.edu/Applications/list io.shtml

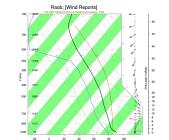

NCL: Data analysis

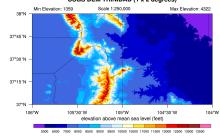
- Array-based math
- Hundreds of functions
 - WRF-ARW specific functions
 - Spherical harmonics
 - Scalar and vector regridding
 - Vertical interpolation
 - EOFs
- Many tailored to geosciences
- Most automatically handle missing data
- Can call C and Fortran routines WRAPIT

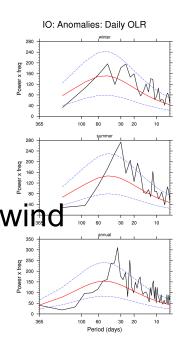
http://www.ncl.ucar.edu/Applications/list dataP.shtml

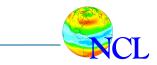


NCL: Visualization




- High-quality and customizable visualizations
- Contours, XY, vectors, streamlines
- Maps with common map projections
- Handles data on regular and irregular grids, triangular meshes
- Specialized scripts for meteograms, skew-T, wind roses, histograms, cross section, panels
- wrf xxxx functions: simplifies visualization for WRF-ARW data




arwin Southern Oscillation

NCL Training Workshops

- First training workshop in 2000, 52 so far, 720+ attendees
 - 3-4 local workshops a year
 - One free annual workshop at a UCAR member university
 - One invited international workshop
- Lectures taught by a scientist and a software engineer
- Includes special lecture on various data formats used in geosciences
- Four hands-on labs sessions; students encouraged to bring their own datasets

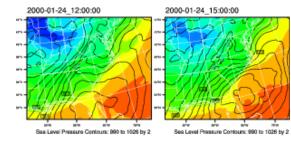
Funding to attend NCL Workshop

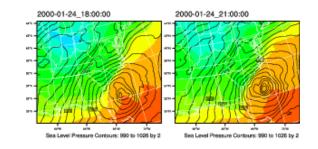
August 16-19, 2011 University of Wyoming Laramie, Wyoming *Bryan Shader – host*

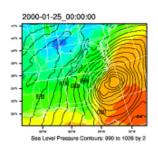
UW and NCAR/CISL will provide travel funds for students and staff from EPSCoR states or minority-serving institutions to attend.

Deadline to apply: July 8, 2011

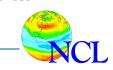
http://www.ncl.ucar.edu/Training/Workshops/

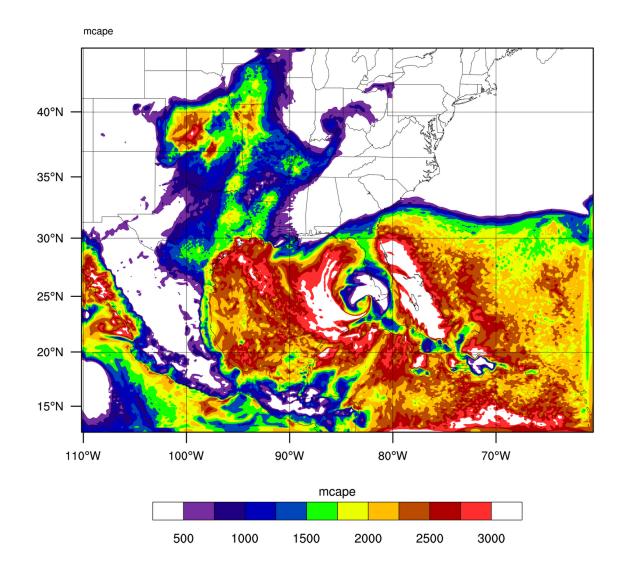

WRF-NCL


A suite of analysis and visualization functions tailored for WRF-ARW model data TEMP at 2 M (K)

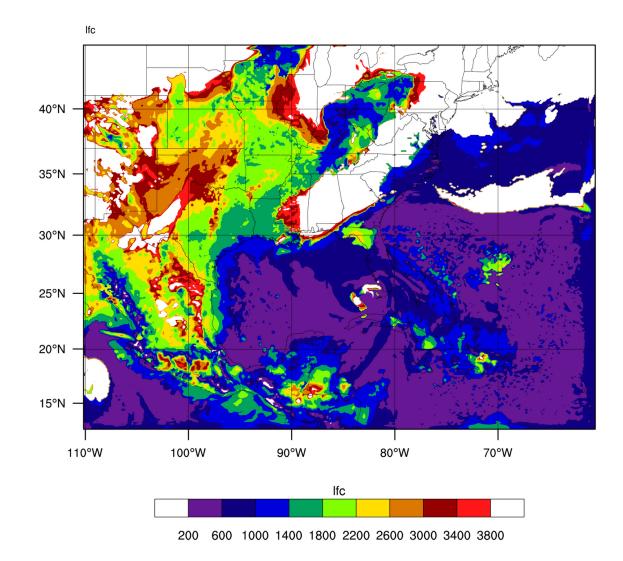

Included with NCL

- Developed by scientists in MMM
- Maintained by Cindy Bruyère/MMM and myself
- Functions for calculating basic diagnostics
- Functions for specialized visualizations precipitation, surface, vorticity, meteograms, helicity, squall, dBZ, etc.
- Website with lots of analysis and visualization examples
- Workshops and tutorials
- Email list for consulting, wrfhelp@ucar.edu

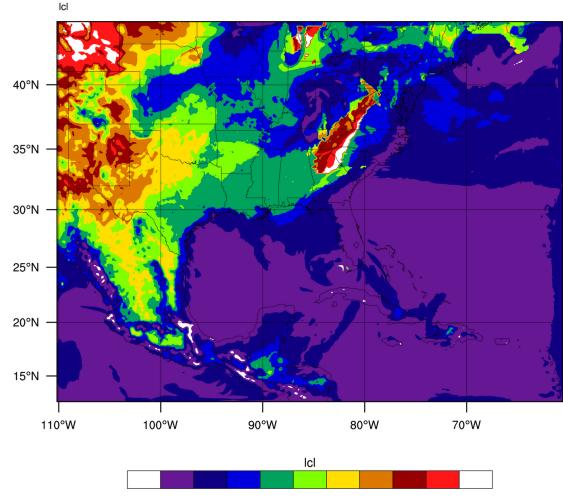

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/



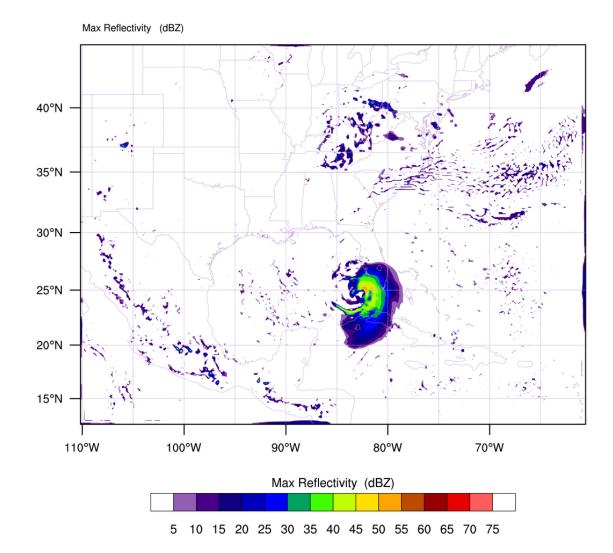
240 255 270 285 300

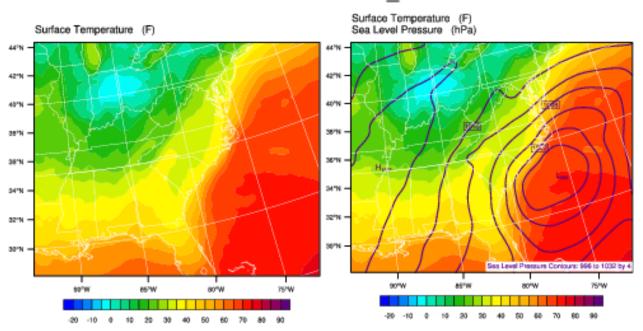


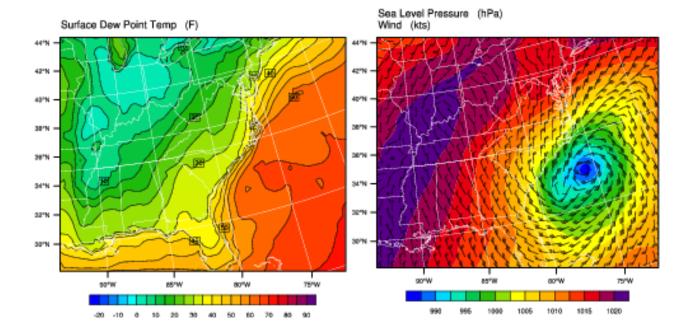
NCL & WRF-NCL • WRF User's Event • June 20-24, 2011



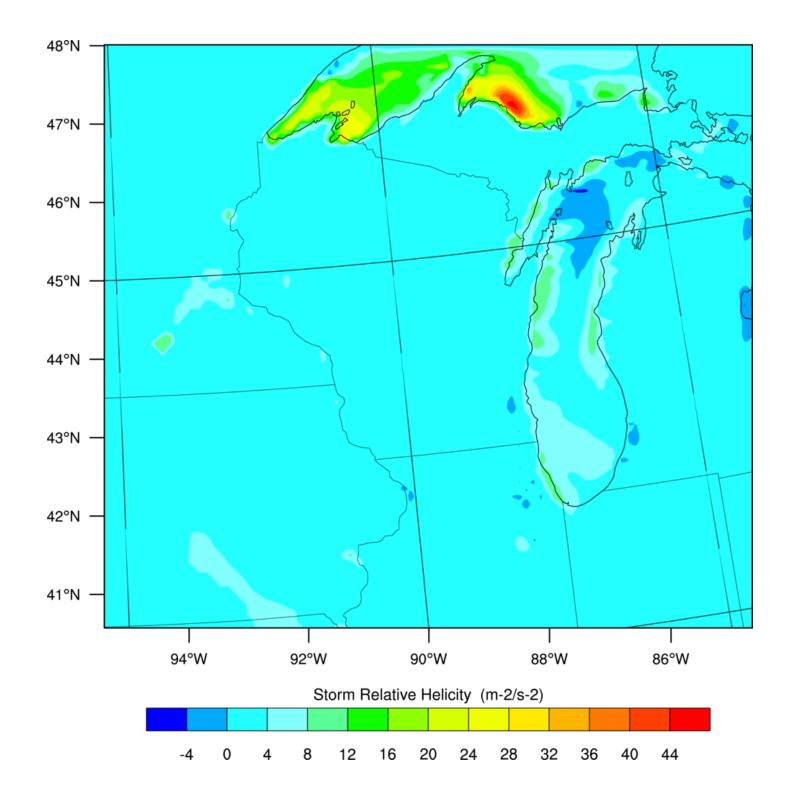
OUTPUT FROM WRF V2.1.2 MODEL WE = 400 ; SN = 301 ; Levels = 35 ; Dis = 12km ; Phys Opt = 3 ; PBL Opt = 1 ; Cu Opt = 1

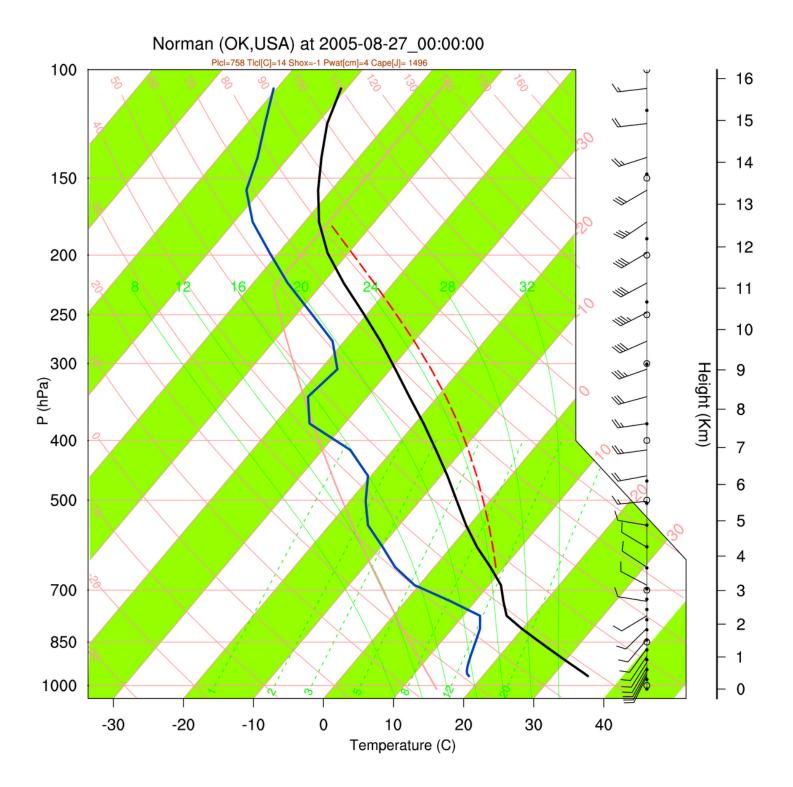

OUTPUT FROM WRF V2.1.2 MODEL WE = 400 ; SN = 301 ; Levels = 35 ; Dis = 12km ; Phys Opt = 3 ; PBL Opt = 1 ; Cu Opt = 1


200 600 1000 1400 1800 2200 2600 3000 3400 3800

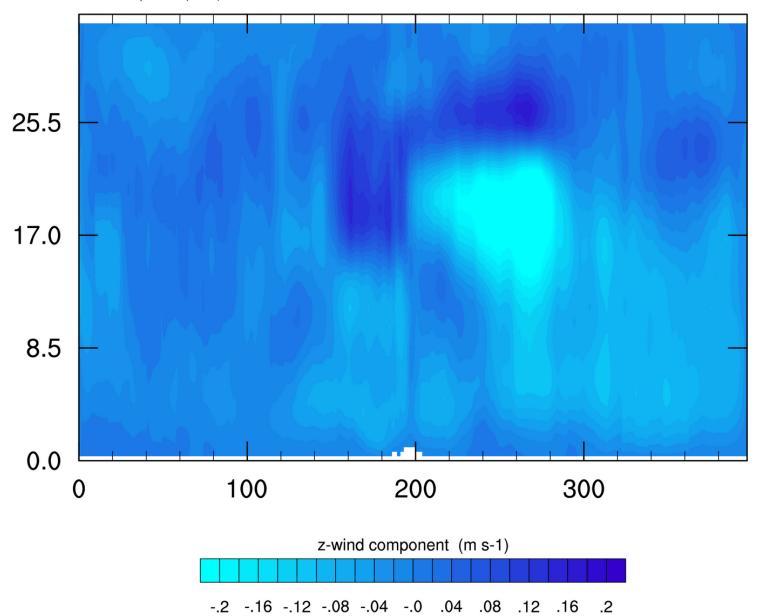

OUTPUT FROM WRF V2.1.2 MODEL WE = 400 ; SN = 301 ; Levels = 35 ; Dis = 12km ; Phys Opt = 3 ; PBL Opt = 1 ; Cu Opt = 1 **REAL-TIME WRF**

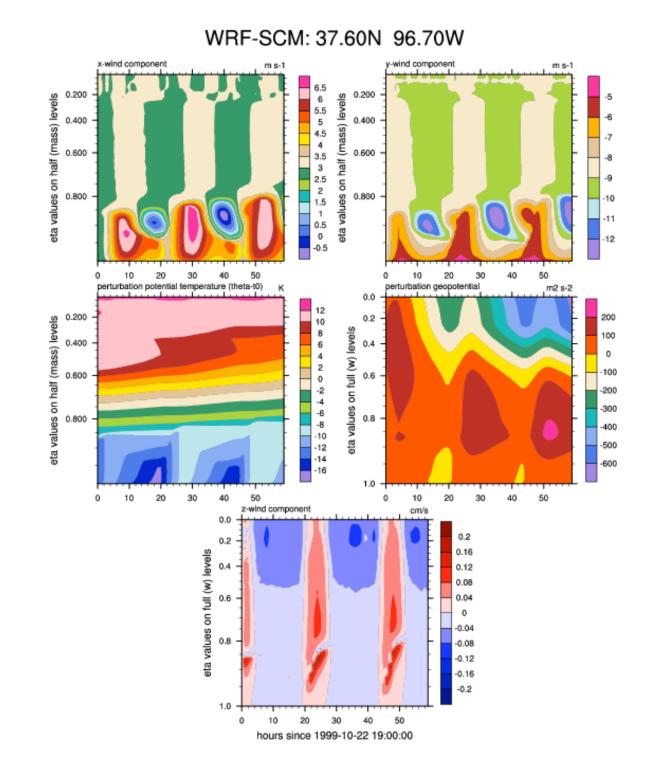
Init: 2005-08-26_00:00:00 Valid: 2005-08-27_00:00:00




OUTPUT FROM WRF V2.1.2 MODEL WE = 400 ; SN = 301 ; Levels = 35 ; Dis = 12km ; Phys Opt = 3 ; PBL Opt = 1 ; Cu Opt = 1

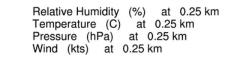
PLOTS for : 2000-01-25_00:00:00

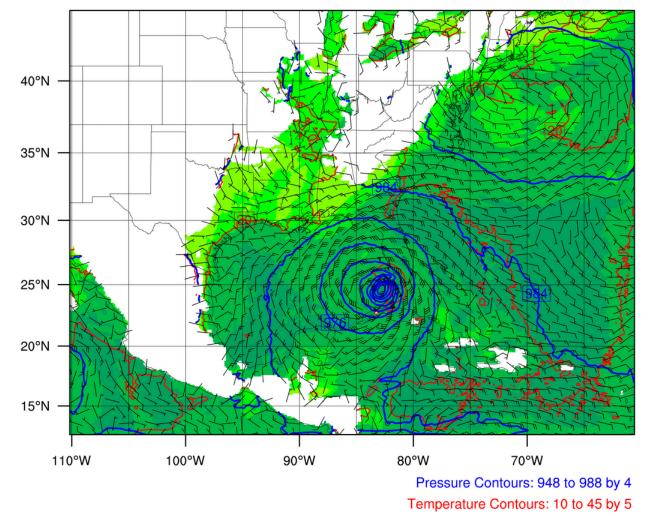


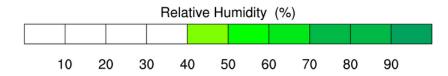


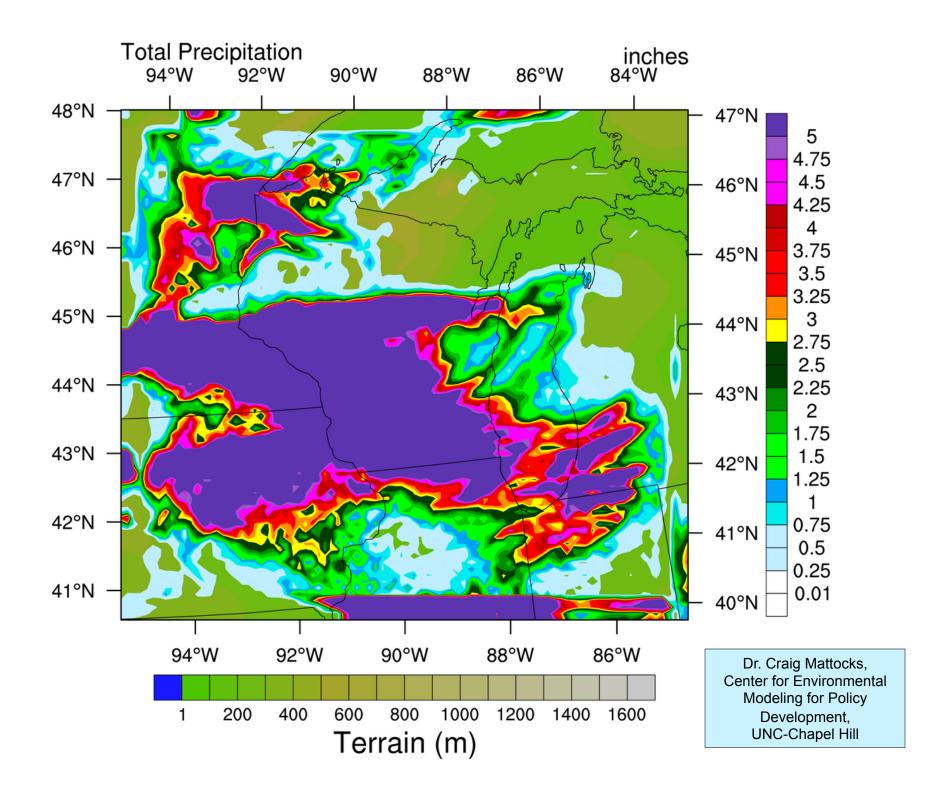
WRF SEABREEZE

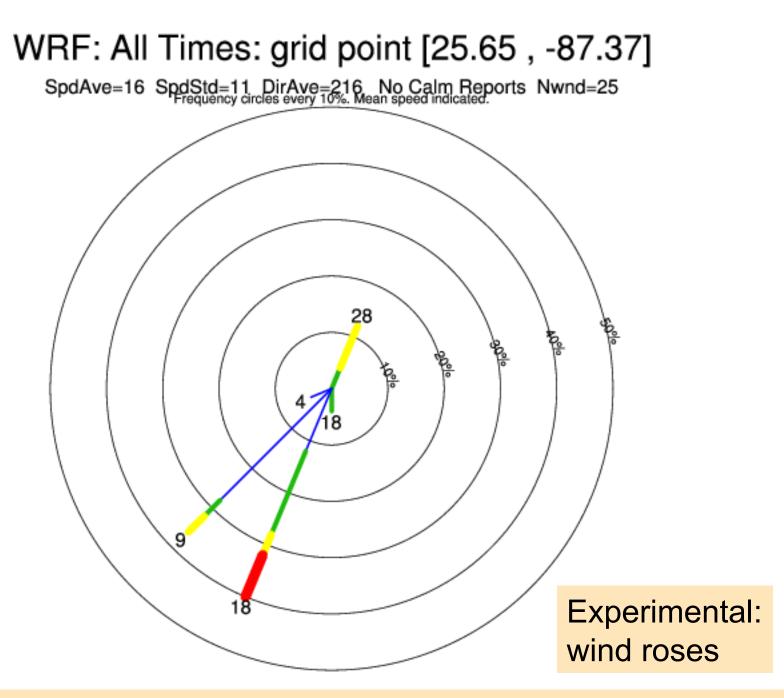
Valid: 2005-08-27_00:00:00

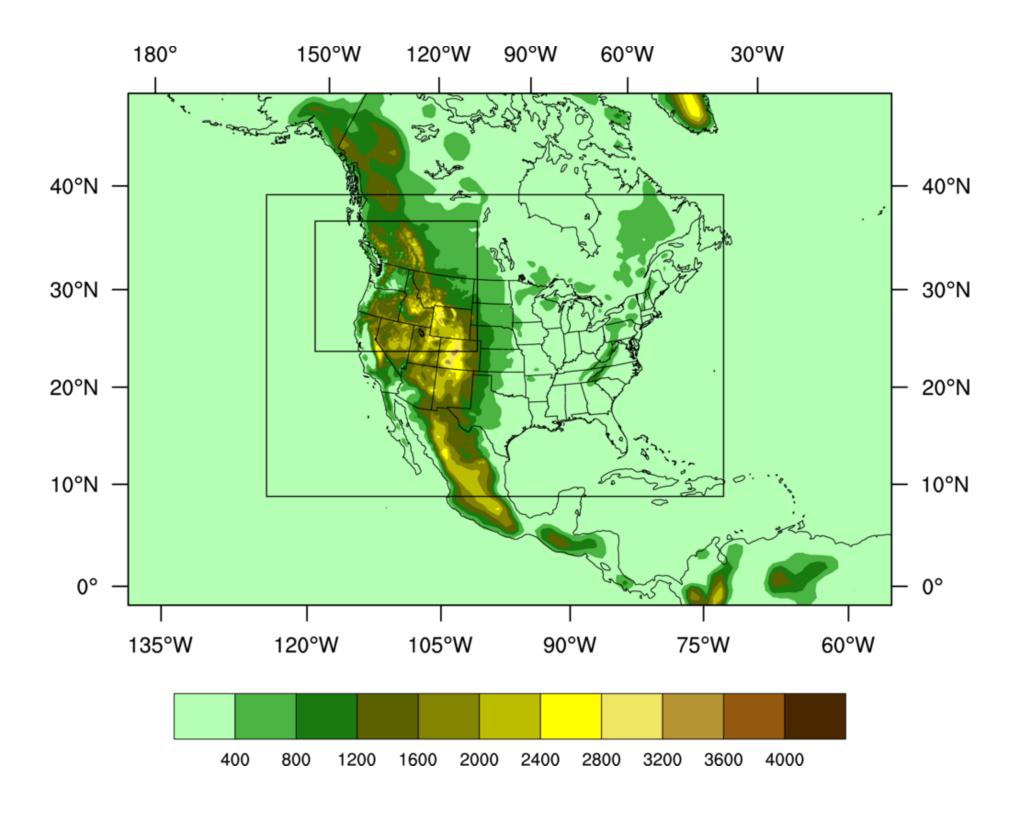


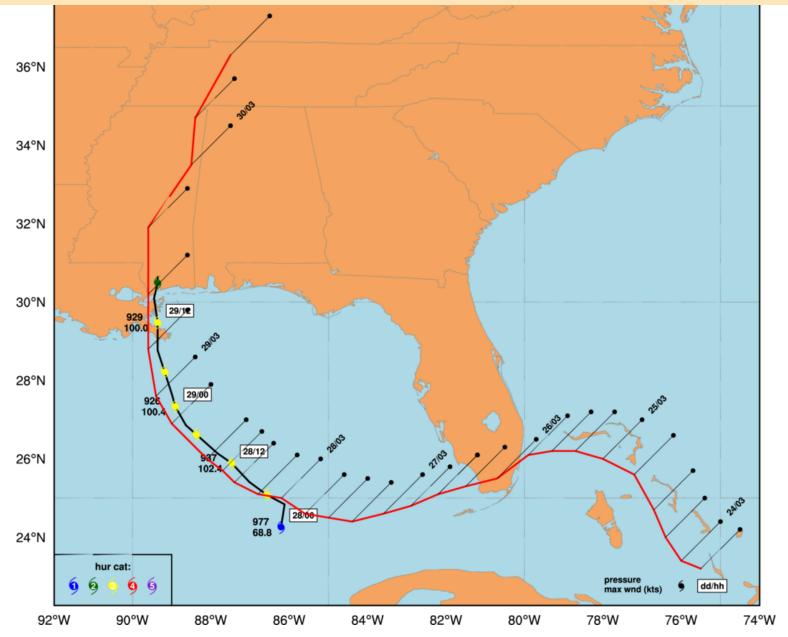


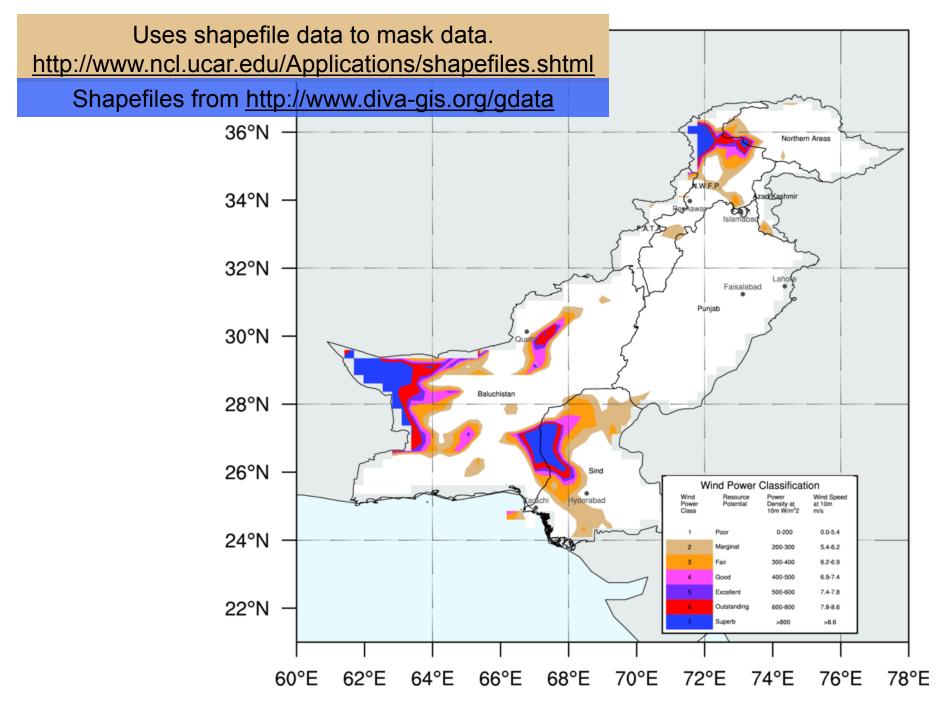



REAL-TIME WRF


Init: 2005-08-26_00:00:00 Valid: 2005-08-27_00:00:00

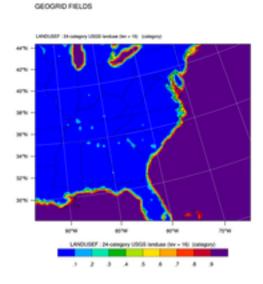


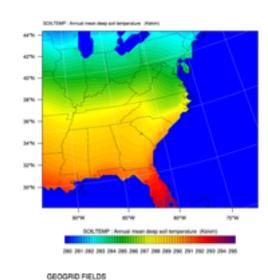

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/Examples/EXPERIMENTAL/wrf_wind_rose.htm


ARW Forecast: Katrina

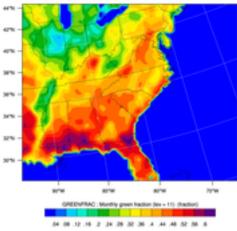
TIME: 2005-08-28_00 2005-08-29_23

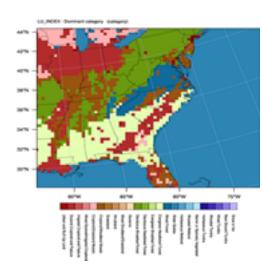
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/Examples/SPECIAL/wrf_Vortex.htm




Wind Speed: 10m

Plotting all fields in a GEO_EM file

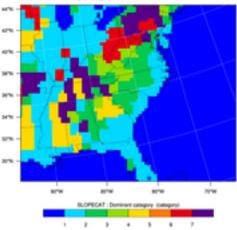

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/Examples/GEO_EM/geo_em_2.htm



GEOGRID FIELDS

ORDANIAC Munity green factor (ex. 11) (holtor

GEOGRID FIELDS



GEOGRID FIELDS

GEOGRID FIELDS

BLOPECAT Dominant salegary (salegary)

Other NCL visualizations

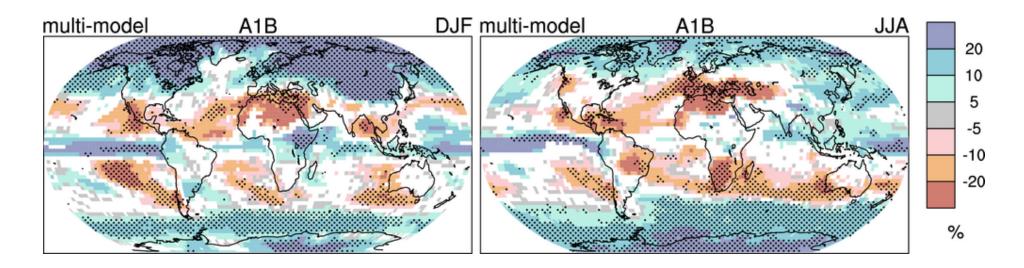
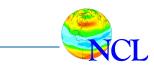
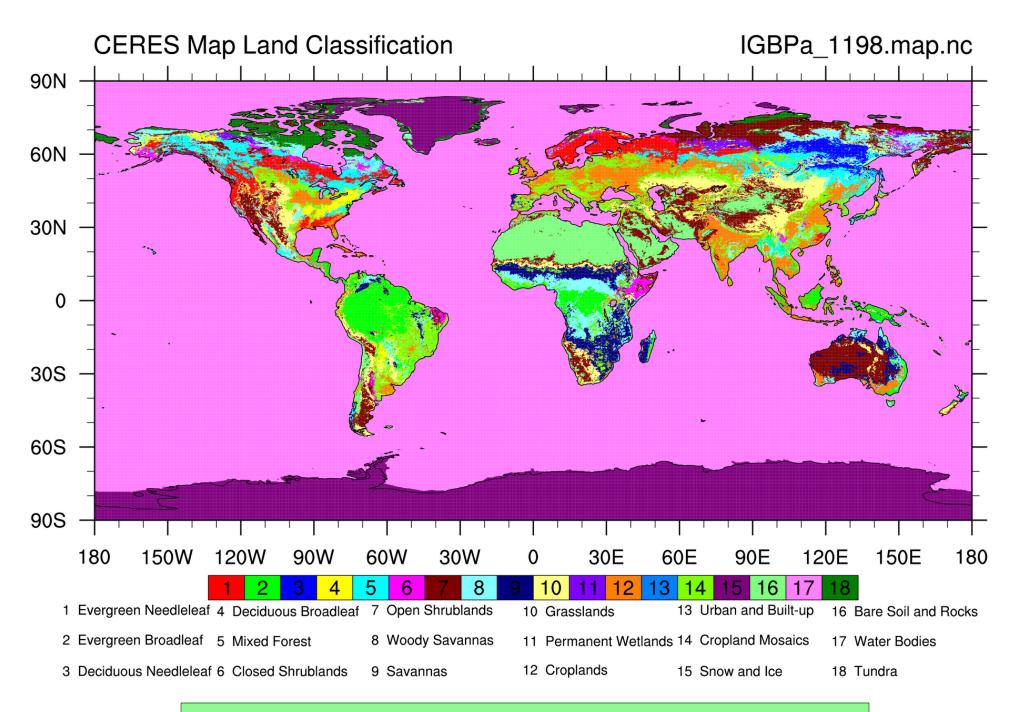
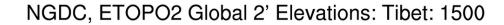
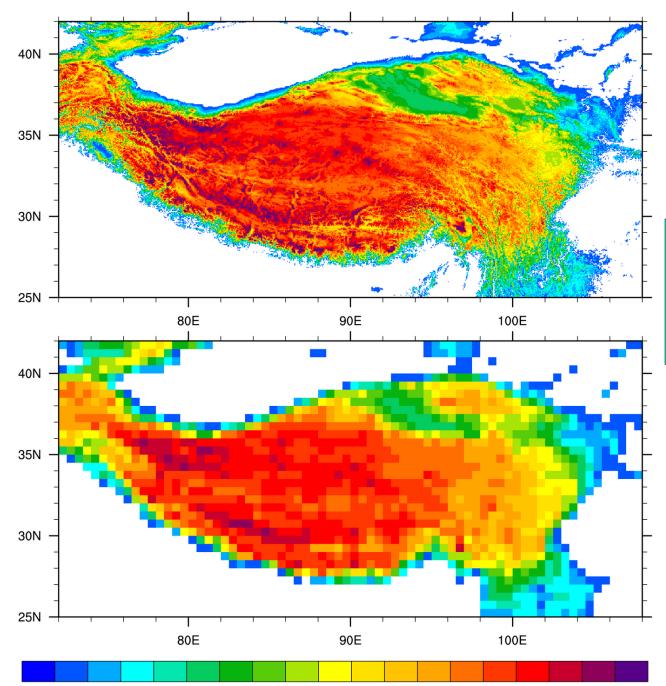
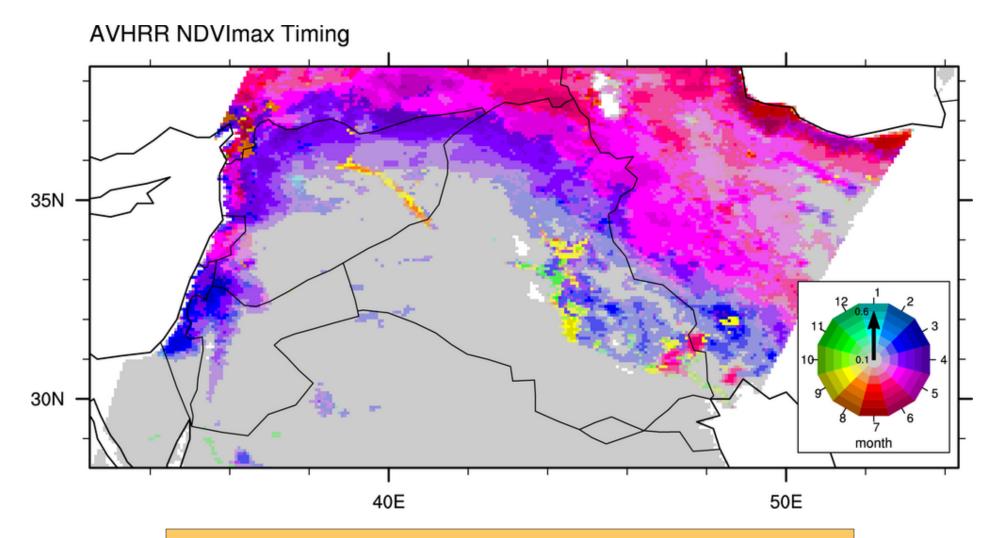




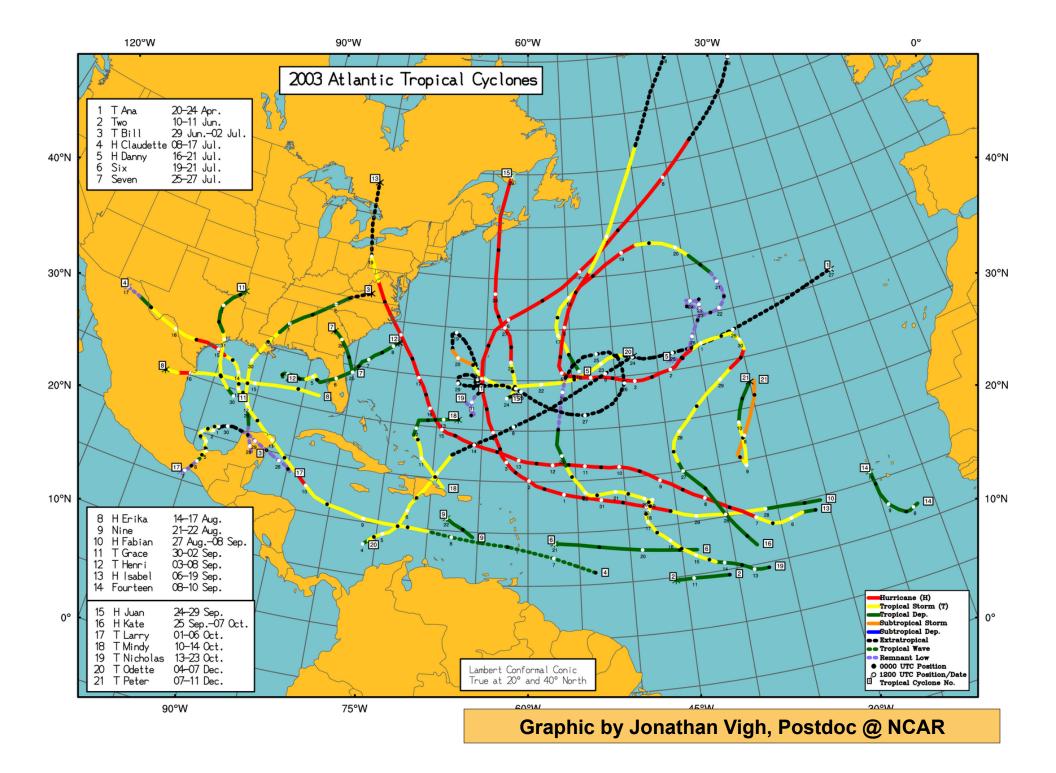
Image courtesy of Julie Arblaster Bureau of Meteorology, University of Melbourne

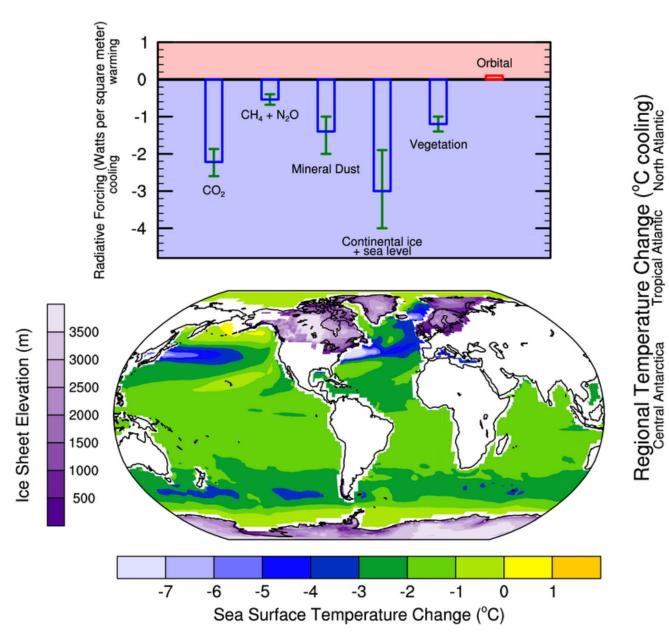


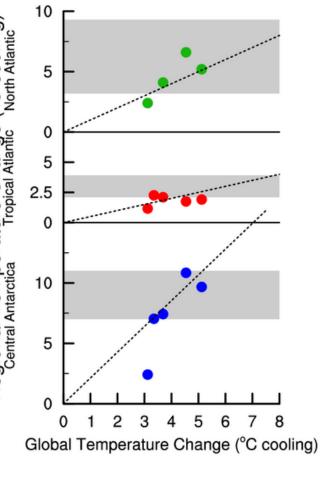


NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

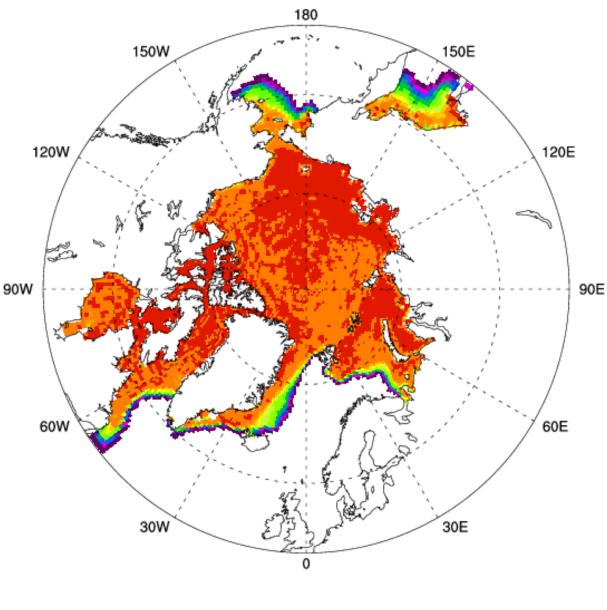

Classification data example, courtesy of Dennis Shea, NCAR/CGD

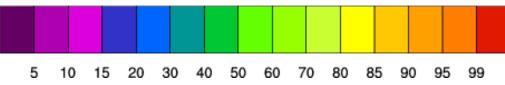



Interpolating from a higher resolution grid to a lower resolution using conservative remapping courtesy Dennis Shea NCAR/CGD

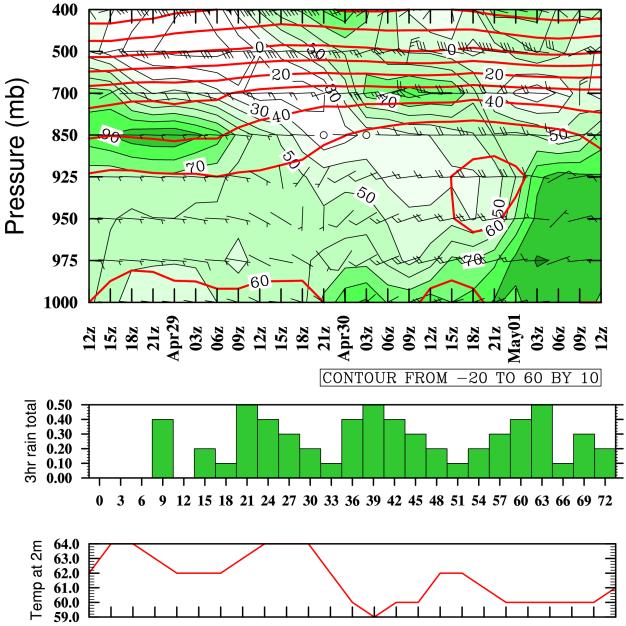

1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000 5250 5500 5750

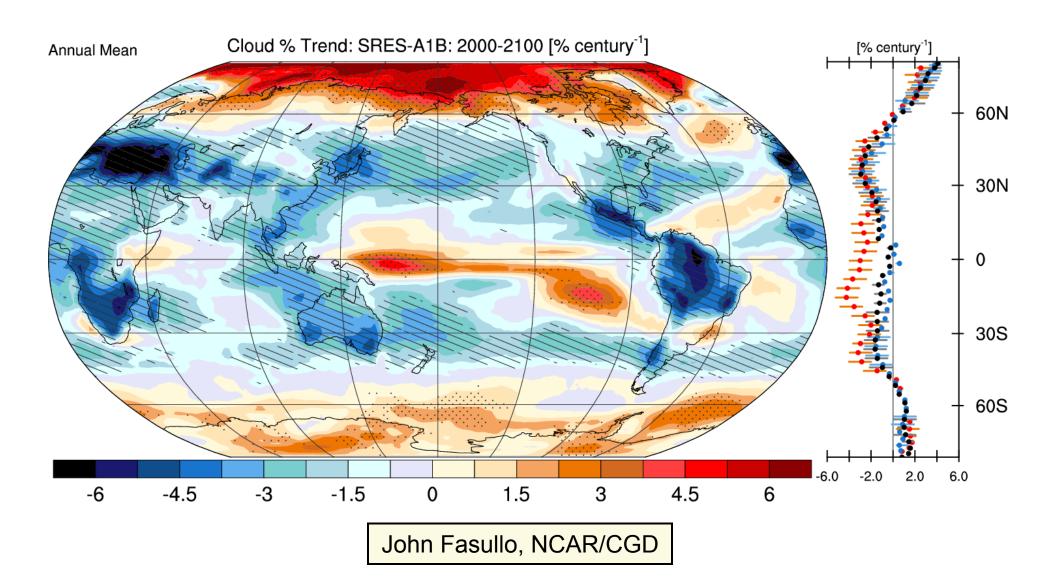
Evans plot - Created by Jason Evans of Univ of New South Wales. An Evans plot is a way to visualize spatially, two variables of interest, one of which provides some measure of "importance".

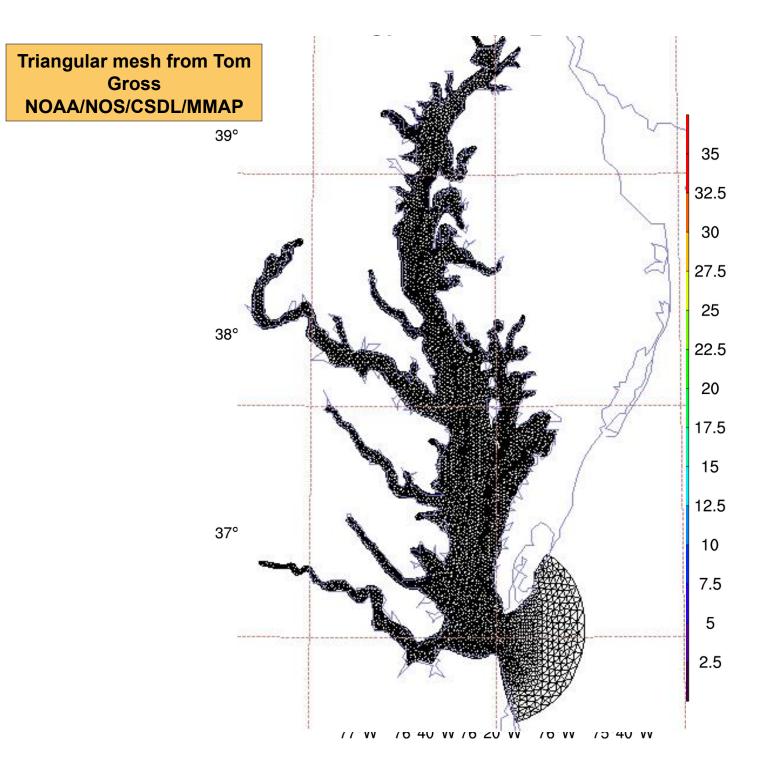


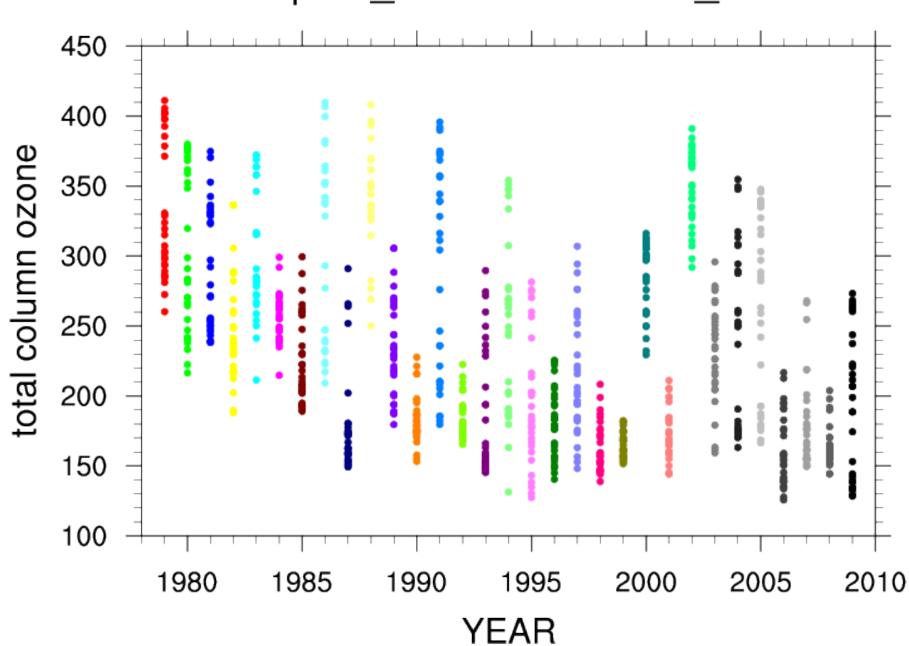


Based on a visualization of Adam Phillips

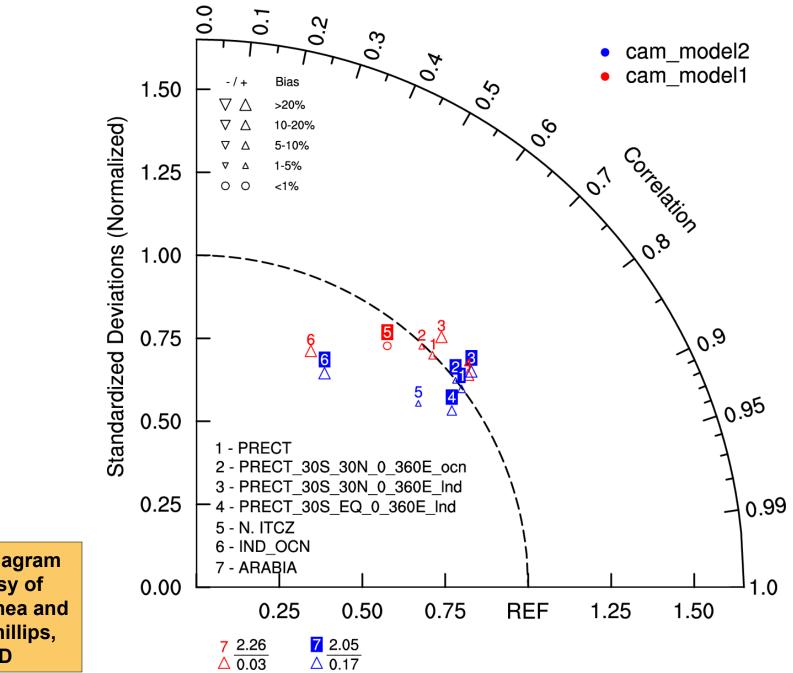

t-grid extended with u-grid

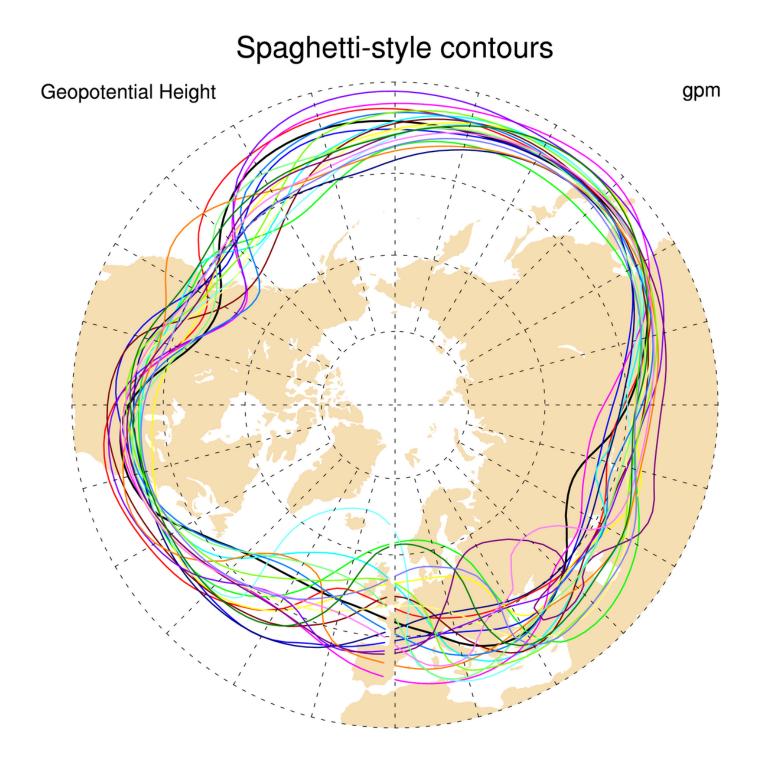

A CICE T-fold Tripole grid. Data and tips for plotting provided by Petteri Uotila of CSIRO Marine & Atmospheric Research Victoria, Australia



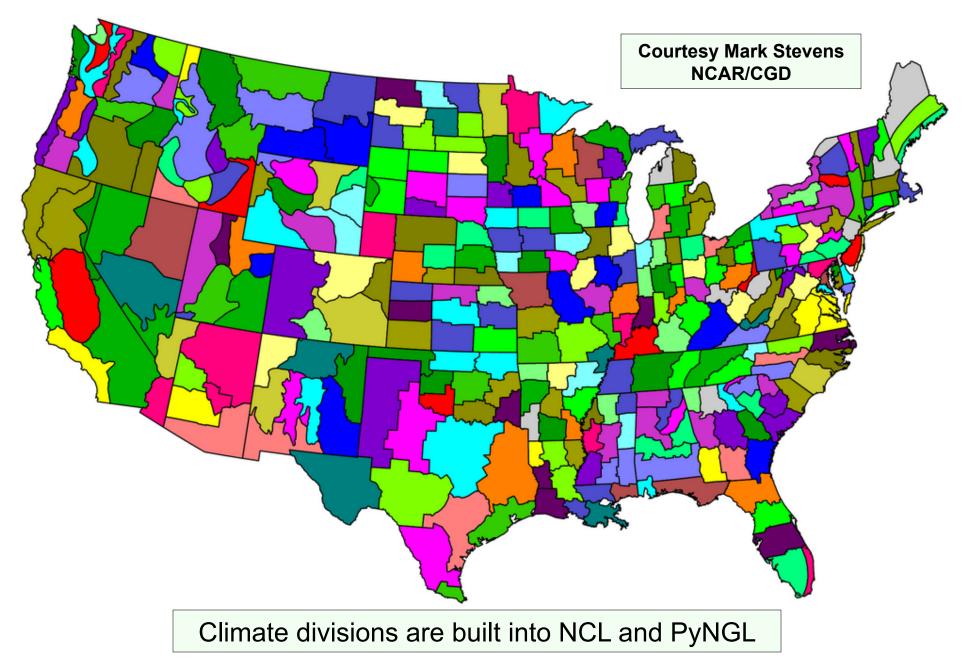

Meteogram for LGSA, 28/12Z

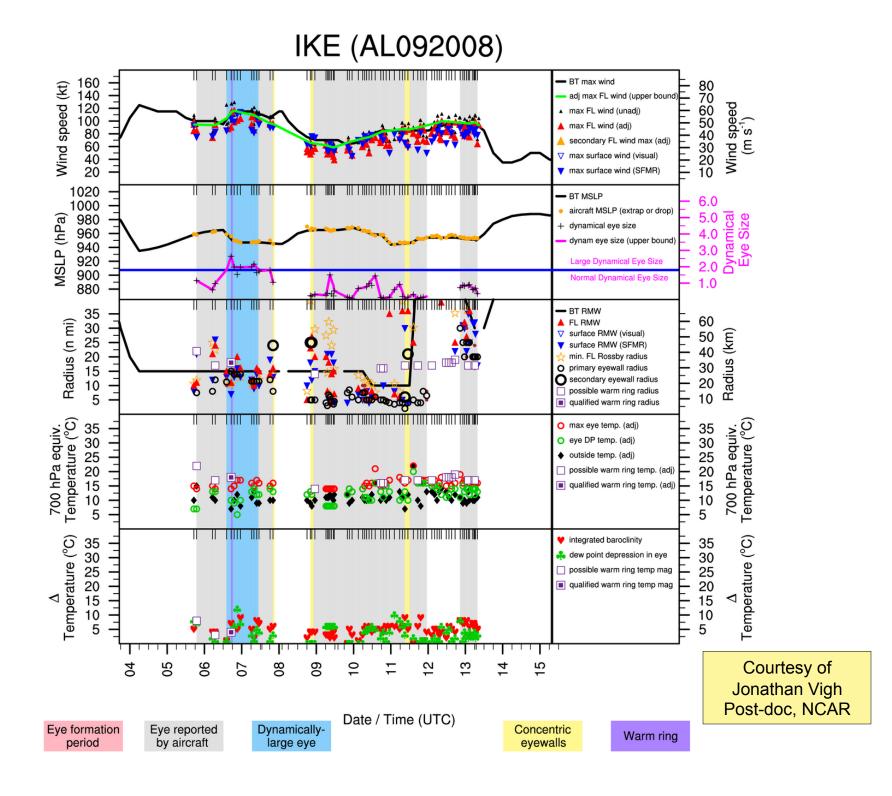
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72



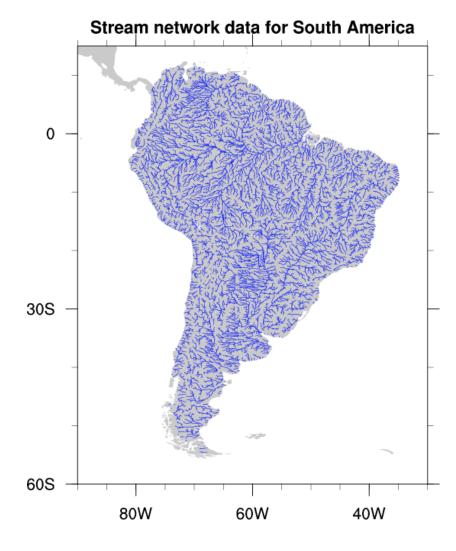


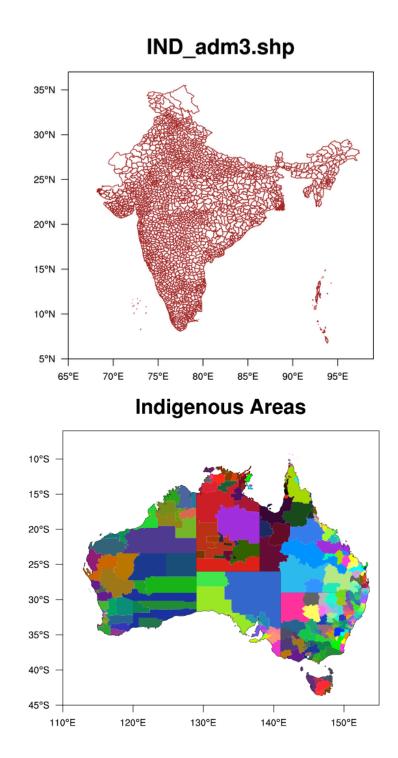
Southpole_TCOTimeSeries_11.dat


DJF



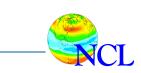
Taylor diagram Courtesy of Dennis Shea and Adam Phillips, CGD


Climate divisions



NCL has support for shapefiles, allowing you to use the numerous free shapefiles for adding your own map outlines

http://www.gadm.org



Topics

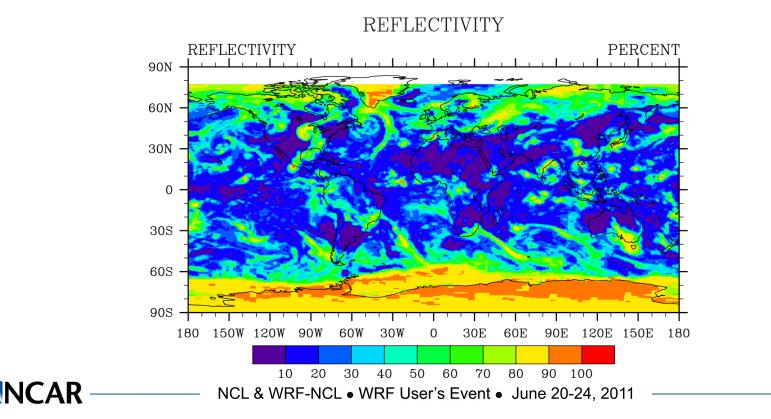
- Overview
- What's new
- NCL language basics
- File input/output
- Data Analysis
- Visualization
- Calling Fortran code from NCL
- Debugging, common mistakes
- Installation, setup, URLs NCAR

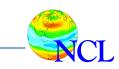
NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

What's new in NCL V6.0.0

- Released May 30, 2011 (many months of beta testing)
- Major overhaul: can now create larger than 2 GB variables (on 64-bit systems)

tc = wrf_user_getvar(f,"tc",-1) ; tc can be > 2 GB


- Default missing values changed
- Can delete multiple variables with "delete" command!


```
slp = wrf_user_getvar(a, "slp", time)
tc2 = wrf_user_getvar(a, "T2", time)
u10 = wrf_user_getvar(a, "U10", time)
....
delete([/slp,tc2,u10/])
```

- Meaning of "byte" and "character" swapped,
- ("unsigned byte" added as new type)

What's new in NCL V6.0.0 (cont'd)

- New functions
- Lots of bug and memory fixes
- New color tables
- HDF5 reader (alpha testing)

What's new – WRF specific

 wrf_user_getvar, wrf_user_ji_to_ll, wrf_user_ll_to_jj, wrf_user_list_times can now take direct input from variable returned by addfiles variable:

fnames = systemfunc("ls -1 wrfout*") + ".nc"
f = addfiles(fnames,"r")
slp = wrf_user_getvar(f,"slp",-1)

- Experimental examples added to WRF-ARW online tutorial:
 - Moving nest domains
 - Wind roses

NCAR

http://www.mmm.ucar.edu/wrf/OnLineTutorial/index.htm

 In the pipeline: pressure/height interpolation code will be able to extrapolate below ground

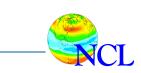
What's coming in V6.1.0 & future

Next IPCC assessment report will place heavy demand on NCL

- Extremely large datasets
- Compute intensive calculations
- Comparing data from different models and grids
- NCL team in close dialog with researchers to handle these scalability issues

Parvis – a three year DOE project run by Argonne to parallelize components of NCL for ultra-large datasets

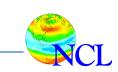
- File input/output
 - HDF-EOS5, HDF5, NetCDF 4 (native)
 - Better compression
 - Parallel NetCDF support
- Computational
 - Faster algorithms
 - Specialized (ocean)
- Visualization
 - "Quick-look" utility
 - Direct png and geotiff output
 - Support for flexible color tables
 - Support for transparency
 - Vectors on a triangular mesh



Topics

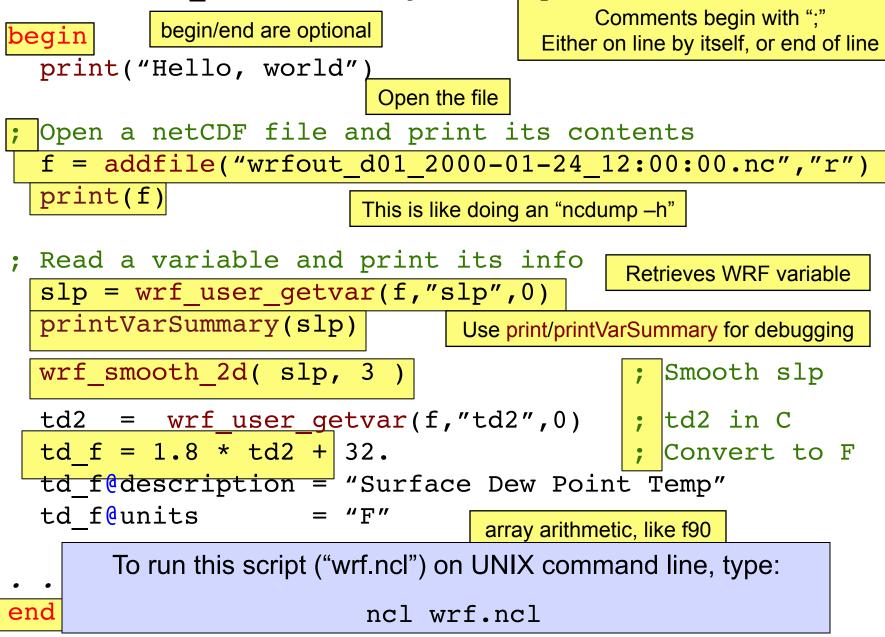
- Overview
- What's new
- NCL language basics
- File input/output
- Data Analysis
- Visualization
- Calling Fortran code from NCL
- Debugging, common mistakes
- Installation, setup, URLs NCAR

NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

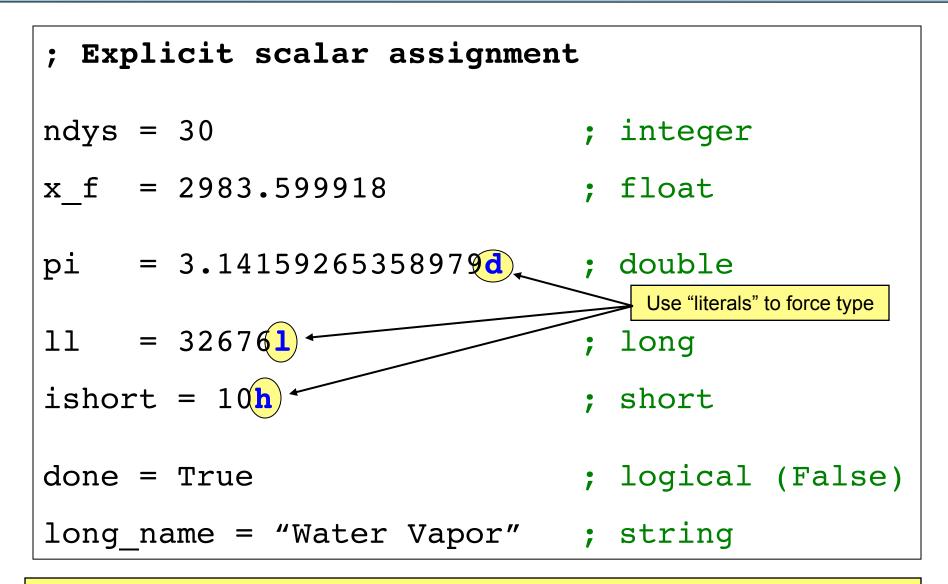

To "run" an NCL script:

- Install NCL and set up environment (covered later)
- Make sure you have "~/.hluresfile"
- Create a file using a UNIX editor that contains NCL script commands, say, "myfile.ncl". Use examples on WRF-ARW online tutorial for help!
- Run the file on the UNIX command line with:

ncl myfile.ncl


NCAR

• Look at output data or view graphical file



— NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

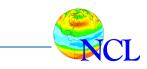
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"

Scalar variable assignment

New unsigned types introduced in NCL V5.2.1 and 6.0.0

Mixing types

i = 7/10	<pre>"largest" type used ; integer (i=0) ; float (x=0.7)</pre>	
y = (22./7)/2d	; double (1.571428537368774)	
z = (i+5) * x	; float (z=3.5)	
<pre>; Use "+" for string concatenation s1 = "hello" s2 = "world" s3 = s1 + ", " + s2 ; s3 = "hello, world"</pre>		
	<pre>mix strings and numerics -1) + "_f" ; s = "var_3_f"</pre>	
	F-NCL • WRF User's Event • June 20-24, 2011	


NCL

Type conversions

; Can't change	e to "higher" type; use <mark>delete</mark>
ff = 1.5e20	; float
ff = 1000	; this is ok, still a float
ff = 1d36	; not okay, "type mismatch"
delete(ff)	
ff = 1d36	; double

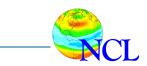
Old ones were "doubletofloat", "floattoint", etc.		
; iowei cype		
Note about "tointeger" issue in WRFUserARW.ncl		
IX = torloat(dX)	; 345./89	
<pre>ix = tointeger(dx)</pre>	; 345	

Arrays

- Row major. . . like C/C++ (Fortran is column major)
- Leftmost dimension varies the slowest, rightmost varies fastest (this matters for speed)
- Dimensions are numbered left to right (0,1,...)
- Use "dimsizes" function to get dimension sizes
- Indexes (subscripts) start at 0 (0 to n-1)
- Use parentheses to access elements:

dx = x(2) - x(1); 3^{rd} value minus 2^{nd} value

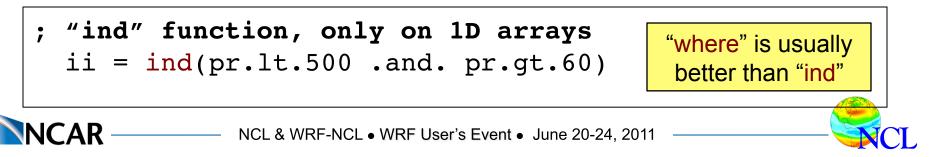
Array assignment: (/. . ./)


; string array, 4 elements
MM = (/"March","April","May","June"/)

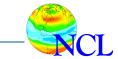
z = (/(/1,2d/), (/3,4/), (/9,8/)/)

; Create 3D double array, 10 x 64 x 128
x = new((/10,64,128/),double)

; Will be filled with 9.969209968386869e+36

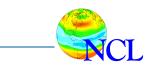


Special functions for arrays


```
; Very useful "where" function
q = where(z.gt.pi .and. z.lt.pi2, pi*z, 0.5*z)
```

```
; "num", "any", "all"
npos = num (xTemp.gt.0.0)
if (.not.any(string_array.eq."hello world")) then
    do something
end if
if (all(xTemp.lt.0)) then
    do something
end if
```


Metadata


- Metadata is information about variables or files.
- In NetCDF-land, metadata consists of:
 - Attributes describes the file or variable (units, history, grid type, long name, map projection)
 - Named dimensions describes the dimensions ("time", "lat", "lon", "levels")
 - Coordinate arrays provides coordinate locations of data (must be one-dimensional)
- WRF-ARW data doesn't normally have traditional 1D coordinate arrays. WRF coordinates are generally 2D or 3D and called XLAT/XLONG

Metadata (continued)

- The "_FillValue" attribute is a special one indicating a variable's missing value.
- When you do an "ncdump -h" or "ncl_filedump" on a NetCDF file, you see all the metadata
- NCL variables are based on this metadata model. Even if you read in a GRIB, HDF, or shapefile, it will "look" like a NetCDF file with attributes, named dimensions, and possibly coordinate arrays.

Missing values (_FillValue attribute)

- "_FillValue" is a special NetCDF and NCL reserved attribute for missing values
- Most NCL functions ignore _FillValue:

x = (/1,2,3,-999,5/); no msg val yet
xavg = avg(x); = -197.6
x@_FillValue = -999; now has a msg val
xavg = avg(x); (1+2+3+5)/4 = 2.75

• Must be same as type of variable

Use '@' to reference attributes

"missing_value" attribute has no special status to NCL.
 If "T" has "missing_value" attribute and no "_FillValue":

T@_FillValue = T@missing_value

• Best not to use zero as a _FillValue

```
"default_fillvalue" - returns default missing
value for the given type
"set_default_fillvalue" - change the default
missing value for the given type
```

"print" / "printVarSummary" will print _FillValue value.

NCL default missing values

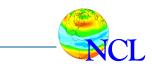
NCL type	Old	New	Special Note
integer	-999	-2147483647	
float	-999.	9.96921e+36	
double	-9999.	9.969209968386869e+36	
string	"missing"	"missing"	
short	-99	-32767	
byte	Oxff	-127	now signed
ubyte		255	(new in 6.0.0) unsigned
character	0	0x00	now unsigned
logical	Missing	Missing	

fmsg = default_fillvalue("float")

— NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

NCAR

Missing value functions


• Use any, all, and ismissing functions to query a variable for missing values:

```
if (.not.any(ismissing(T))) then
    do something
end if
if (all(ismissing(T))) then
    do something
end if
```

• Use num & ismissing to count missing values:

```
nmsg = num(ismissing(T))
```

 Use the new "default_fillvalue" and "set_default_fillvalue" if needed

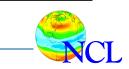
File and variable attributes

```
; Use the "@" symbol to get at global file attributes.
f = addfile("wrfout_d01_2005-08-27_00:00:00.nc","r")
print(f@TITLE) ; "OUTPUT FROM WRF V2.1.2 MODEL"
print(f@START_DATE) ; "2005-08-26_00:00:00"
print(f@MAP_PROJ) ; 3
```

```
; Use the "@" symbol to get at variable attributes too.
uvmet = wrf_user_getvar(f, "uvmet", 0)
print(uvmet@units) ; "m s-1"
print(uvmet@description) ; "u,v met velocity"
```

```
; Use "isatt" to test for an attribute first.
if(isatt(uvmet,"units")) then
  print("The units of uvmet are '" + uvmet@units + "'")
end if
(0) The units of uvmet are 'm s-1'
NCAR ______ NCL & WRF-NCL • WRF User's Event • June 20-24, 2011 ______
```

Arithmetic operations on arrays, like f90


- May not need to loop over arrays to do calculations
- Arrays need to be same size, but scalars can be used any time
- Highest "type" will be assigned to variable on left of "="

```
; Can do arithmetic like Fortran 90
ch4 = ch4 * 1e6 ; convert to ppm, assign to same var
A = data_DJF - data_JJA ; data_DJF/data_JJA must be same size
zlev = (-7*log(lev/10^3)) ; evaluated as
; (-7)*log(lev/(10^3))
```

Metadata not copied to A or zlev

; Use "conform" to promote an array ; "Twk" is (time,lat,lon,lev), "ptp" is (lat,lon) ptropWk = conform(Twk, ptp, (/1,2/)) ; time,lat,lon,lev

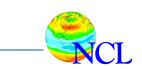
Array reorder, reshape, reverse

; Reshaping an array

```
t1D = ndtooned(T) ; Convert to 1D array
t2D = onedtond(t1D, (/N,M/)) ; Convert to N x M array
```

; Reordering an array Requires named dimensions be present
; Let T(time,lat,lon)
t = T(lat|:,lon|:,time|:) ; Can't assign to same var

; Reversing dimensions of an array


; Let T(lev,lat,lon)
T = T(::-1,:,:) ; Will reverse coordinate array too

Functions for manipulating arrays

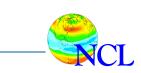
http://www.ncl.ucar.edu/Document/Functions/array_manip.shtml

Array Subscripting

- Three kinds of array subscripting
 - 1. Index (uses ':' and '::')
 - 2. Coordinate (uses curly braces '{' and '}')
 - 3. Named dimensions (uses '!')
- Most WRF-ARW data does not have coordinate arrays, so can't use #2
- You can mix subscripting types in one variable
- Be aware of dimension reduction
- Index subscripting is 0-based (Fortran by default is 1-based)

NCAR

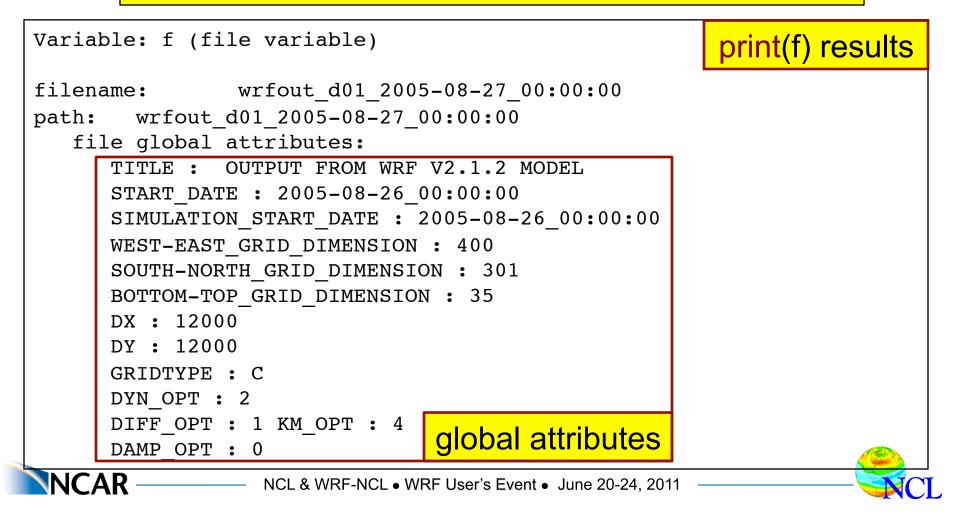
http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclVariables.shtml#Subscripts


Array index subscripting, : and ::

; Consider T(ntime x nlat x nlon)		
t = T ;	copies metadata, don't use T(:,:,:)	
t = (/T/);	doesn't copy metadata	
;	(_ <i>FillValue</i> is retained)	
; The following create	es 2D array "t"	
t = T(0, :, ::5);	1 st time index, all lat, every 5 th lon	
;	(nlat x nlon/5)	
$+ = \pi(0 \cdot \cdot -1 \cdot 50)$	1 st time index, reverse lat,	
, .	first 51 lons (nlat x 51)	
/		
t = T(:1, 45, 10:20);	1 st two time indices, 46 th index of lat,	
;	11 th -21 st indices of lon (2 x 11)	
; To prevent dimension	reduction	
t = T(0:0, :, ::5)	; 1 x nlat x nlon/5	
t = T(:1, 45: 45, 10: 20))) ; 2 x 1 x 21	
	F-NCL • WRF User's Event • June 20-24, 2011	

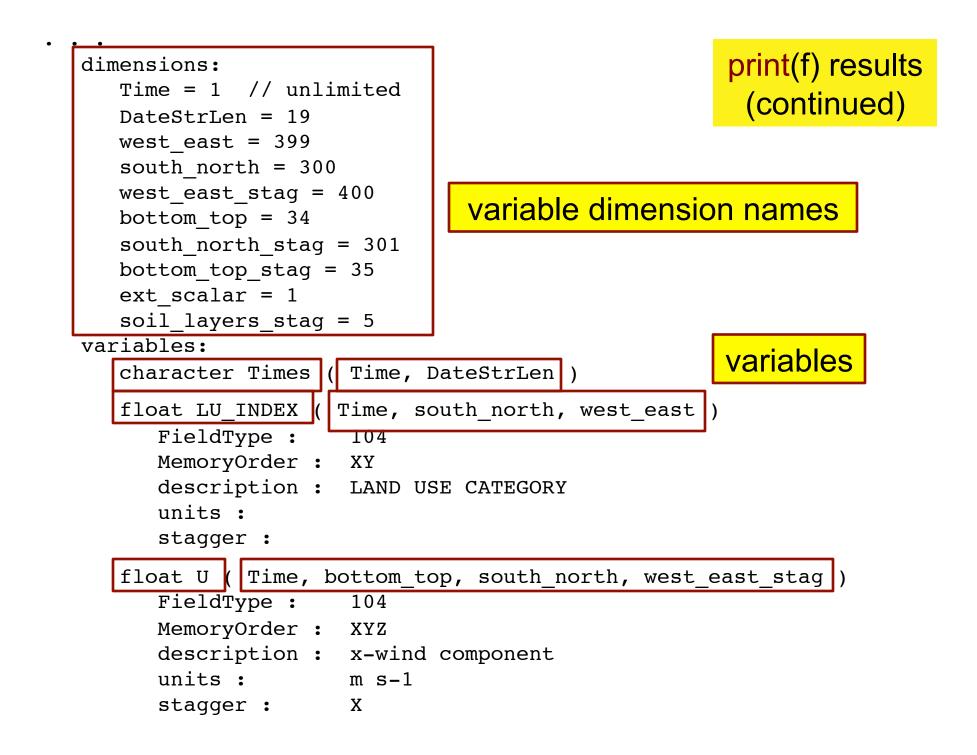
Topics

- Overview
- What's new
- NCL language basics
- File input/output
- Data Analysis
- Visualization
- Calling Fortran code from NCL
- Debugging, common mistakes
- Installation, setup, URLs NCAR


NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

Opening and examining a WRF output file

f = addfile("wrfout_d01_2005-08-27_00:00:00.nc","r")
print(f)


WRF files don't have ".nc" suffix; must add here.

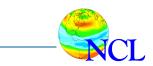
KHDIF : 0 KVDIF : 0 MP PHYSICS : 3 RA LW PHYSICS : 1 RA SW PHYSICS : 1 SF SFCLAY PHYSICS : 1 SF SURFACE PHYSICS : 1 BL PBL PHYSICS : 1 CU PHYSICS : 1 WEST-EAST PATCH START UNSTAG : 1 WEST-EAST PATCH END UNSTAG : 399 WEST-EAST PATCH START STAG : 1 WEST-EAST PATCH END STAG : 400 SOUTH-NORTH PATCH START UNSTAG : 1 SOUTH-NORTH PATCH END UNSTAG : 300 SOUTH-NORTH PATCH START STAG : 1 SOUTH-NORTH PATCH END STAG : 301 BOTTOM-TOP PATCH START UNSTAG : 1 BOTTOM-TOP PATCH END UNSTAG : 34 BOTTOM-TOP PATCH START STAG : 1 BOTTOM-TOP PATCH END STAG : 35 GRID ID : 1 PARENT ID : 0 I PARENT START : 0 J PARENT START : 0 PARENT GRID RATIO : 1 DT : 60

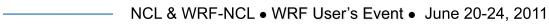
print(f) results (continued)

more global attrs


```
float V ( Time, bottom top, south north stag, west east )
   FieldType :
                 104
  MemoryOrder :
                 XYZ
                                              print(f) results
 (continued)
   description : y-wind component
   units :
                 m s-1
   stagger :
                 Y
float W ( Time, bottom top stag, south north, west east )
  FieldType :
                 104
   MemoryOrder :
                 XYZ
   description : z-wind component
   units :
                 m s-1
                 Ζ
   stagger :
float PH ( Time, bottom top stag, south north, west east )
   FieldType :
                 104
  MemoryOrder :
                 XYZ
   description : perturbation geopotential
   units :
                 m_{2} s_{-2}
   stagger :
                 Ζ
float PHB ( Time, bottom top stag, south north, west east )
  FieldType :
                 104
   MemoryOrder :
                 XYZ
   description : base-state geopotential
                                            more variables
  units :
                 m2 s-2
   stagger :
                 Ζ
```

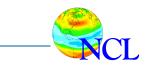
Using "ncl_filedump" on UNIX command line


Don't need to write a script to quickly look at a WRF file. On the UNIX command line, type:


- ncl_filedump -h
- ncl_filedump wrfout_d01_2005-08-27_00:00.nc
- ncl_filedump -v RAINC wrfout_d01_2005-08-27_00:00.nc

Can use ncl_filedump on other files that NCL's "addfile" supports: GRIB 1 and 2, HDF4, HDF-EOS2, etc

- ncl_filedump TES-Aura_L3-ATM-TEMP_r0000003459_F01_05.he5
- ncl_filedump z_tigge_c_rjtd_20061119120000_0072_sl_glob_prod.grb2
- ncl_filedump states.shp


NCAR

Two ways to read a variable off a file

- Use "->" syntax
- Use "wrf_user_getvar" function
 - Developed to make it easier to get derived variables
 - It is an NCL script function, so must load "WRFUserARW.ncl" script
 - You can modify this script (more later)
 - Only use with WRF-ARW data

Reading (and examining) a variable off a file (method 1)

<pre>f = addfile("wrfout_d01_2005-</pre>	08-27_00:00:00.nc","r")
u = f -> U	
<pre>printVarSummary(u)</pre>	
; print(u) ; Same as prin	tVarSummary, but includes values
Variable: u	printVarSummary(u) results
Type: float	
Total Size: 16320000 bytes	
4080000 values	named dimensions
Number of Dimensions: 4	
Dimensions and sizes: [Time 1] x	[bottom_top 34] x [south_north
300] x [west east stag 400]	
Coordinates:	no coordinate arrays
Number Of Attributes: 5	ne coordinate anayo
FieldType : 104	
MemoryOrder : XYZ	variable attributes
description : x-wind component	
units : m s-1	
stagger : X	
NCL & WRF-NCL • WRF User's E	Event • June 20-24, 2011

Reading (and examining) a variable off a file (method 2)

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"

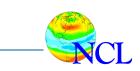
f = addfile("wrfout_d01_2005-08-27_00:00:00.nc","r")
slp = wrf user getvar(f,"slp",0)

printVarSummary(slp)

```
Variable: slp
                                      printVarSummary(slp) results
Type: float
Total Size: 478800 bytes
            119700 values
Number of Dimensions: 2
Dimensions and sizes: [south north | 300] x [west east | 399]
Coordinates:
Number Of Attributes: 5
  description : Sea Level Pressure
  units :
           hPa
 FieldType : 104
 MemoryOrder : XYZ
  stagger :
 NCAR
                  NCL & WRF-NCL • WRF User's Event • June 20-24, 2011
```

Further querying a variable

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"


```
f = addfile("wrfout_d01_2005-08-27_00:00:00.nc","r")
slp = wrf_user_getvar(f,"slp",0)
```

<pre>print(dimsizes(slp))</pre>	;	Print dimension sizes of slp
<pre>print(min(slp))</pre>	;	Print minimum of slp
<pre>print(max(slp))</pre>	;	Print maximum of slp
<pre>print(typeof(slp))</pre>	;	Print type of slp
<pre>print(getvaratts(slp))</pre>	;	Print attributes of slp

; Can assign to variables dims = dimsizes(slp) slp_min = min(slp) slp_max = max(slp) attrs = getvaratts(slp) slp_avg = avg(slp)

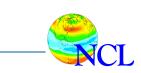
Most of above info is printed as part of printVarSummary procedure

Creating a new variable & adding attributes

f = addfile("wrfout_d01_2005-08-27_00:00:00.nc","r")
td2 = wrf_user_getvar(f,"td2",0) ; Units are "C"

td_f = 1.8 * td2 + 32. ; Can operate on whole array
td_f@units = "F" ; Add some attributes
td_f@description = "Surface Dew Point Temp"

; To preserve metadata td_f = td2 ; Easy way to copy metadata, can be expensive td_f = 1.8 * td2 + 32 td_f@description = "Surface Dew Point Temperature" td_f@units = "F" printVarSummary(td_f) ; To write new variable to an existing file f = addfile("wrfout_d01_2005-08-27_00:00:00.nc"("w"))

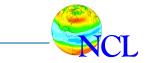

f->td_f = td_f ; Write "td_f" to same file

NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

Topics

- Overview
- What's new
- NCL language basics
- File input/output
- Data Analysis
- Visualization
- Calling Fortran code from NCL
- Debugging, common mistakes
- Installation, setup, URLs NCAR

NCL & WRF-NCL • WRF User's Event • June 20-24, 2011


WRF-NCL Functions

- Two kinds:
 - Built-in mainly functions to calculate diagnostics.
 Seldom need to use these directly.
 - slp = wrf_slp(z, tk, P, QVAPOR)
 - "WRFUserARW.ncl" developed to make it easier to calculate derived variables and generate plots, calls some built-in functions

load "\$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
slp = wrf_user_getvar(f,"slp",time)

http://www.ncl.ucar.edu/Document/Functions/wrf.shtml

WRF-NCL built-in functions

Can use NCL built-in functions, in place of wrf_user_getvar, not always recommended!

```
T = f->T(time,:,:,:)
P = f->P(time,:,:,:)
PB = f->PB(time,:,:,:)
QVAPOR = f->QVAPOR(time,:,:,:)
PH = f->PH(time,:,:,:)
PHB = f->PHB(time,:,:,:)
T = T + 300.
P = P + PB
QVAPOR = QVAPOR > 0.0 ; Set anything <= 0 to msg
PH = ( PH + PHB ) / 9.81
z = wrf_user_unstagger(PH,PH@stagger)
tk = wrf_tk( P , T )
slp = wrf_slp( z, tk, P, QVAPOR )
```

Replace with single call

WRF-NCL "WRFUserARW.ncl" functions

wrf_user_getvar - Get fields from input file
 ter = wrf_user_getvar(a, "HGT", 0)
 t2 = wrf_user_getvar(a, "T2", -1)
 slp = wrf_user_getvar(a, "slp", 1)

wrf_user_getvar is user-modifiable! (more later)

Diagnostics

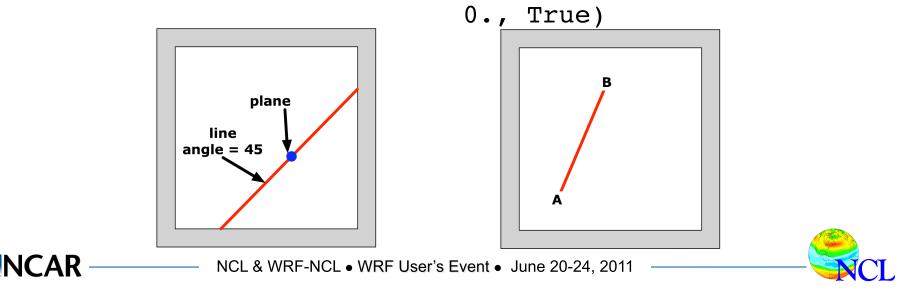
Absolute/Potential Vorticity
2D mcape/mcin/lcl/lfc
3D cape/cin
Reflectivity
Geopotential
Pressure
Relative Humidity
Sea Level Pressure
Dew Point Temperature
Temperature
Potential Temperature
Wind on mass points
U/V components of wind rotated to earth coords
Height

Other WRF-NCL "WRFUserARW.ncl" functions

wrf_user_list_times
 Get list of times available in input file

times = wrf_user_list_times (f)

- wrf_user_unstagger Unstaggers an array ua = wrf_user_unstagger (U, "X") ua = wrf_user_getvar(f,"ua",time)
- wrf_map_overlays
 Draws plots over a map background
 map = wrf_map_overlays(a, wks, \

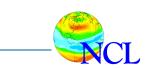

NCAR

(/contour,vector/), pltres, mpres)

NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

Other WRF-NCL "WRFUserARW.ncl" functions

- wrf_user_intrp3d
 Interpolate horizontally to a given pressure or height level
 Interpolate vertically (pressure/height), along a given line
 tc_plane = wrf_user_intrp3d(tc, p, "v", (/30,25/), \
 45., False)


Other WRF-NCL "WRFUserARW.ncl" functions

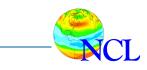
wrf_user_ll_to_ij / wrf_user_ij_to_ll
 Convert: lat/lon ij

res@useTime - Default is 0 Set to a time index value if you want the reference longitude/latitudes to come from a different time index only use this for moving nest output which has been stored in a single file.

res@returnInt - Default is True
If set to False, the return values will be real.
 (wrf_user_ll_to_ij only)

Modifying wrf_user_getvar function

- Copy the following file to your own directory: "\$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
- Edit your copy and look for line that starts with: function wrf_user_getvar
- Before the lines:


```
return(var)
```

end

NCAR

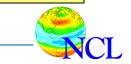
Add these lines, replacing "newvar" as appropriate:

```
if( variable .eq. "newvar" ) then
   . .fill in code here. .
   return(newvar)
end if
```


Modifying wrf_user_getvar function (cont'd)

- To use the new version of this function, you can do one of two things:
 - 1. Load your modified script instead of the system one:

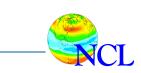
```
load "./WRFUserARW.ncl"
xxx = wrf_user_getvar(f,"XXX",0)
```


2. Remove all but the modified "wrf_user_getvar" function from your copy, rename the function ("wrf_user_getvar2"), and rename the file ("my_new_script.ncl"). To use the new function, you need to load the above script and your new script:

load "\$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
load "./my new script.ncl"

xxx = wrf_user_getvar2(f,"XXX",0)

NCAR


NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

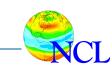
Topics

- Overview
- What's new
- NCL language basics
- File input/output
- Data Analysis
- Visualization
- Calling Fortran code from NCL
- Debugging, common mistakes
- Installation, setup, URLs NCAR

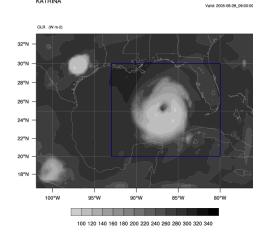
NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

Links for visualization scripts

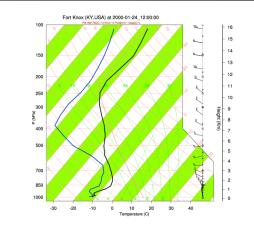
- WRF-ARW online tutorial
 <u>http://www.mmm.ucar.edu/wrf/OnLineTutorial/index.htm</u>
- NCL/WRF examples page
 <u>http://www.ncl.ucar.edu/Applications/wrf.shtml</u>

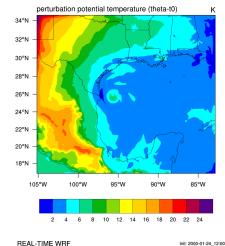

NCL Home Page -> Examples -> WRF

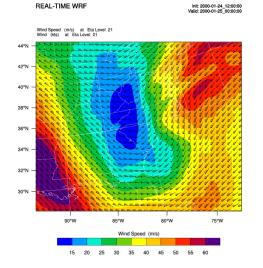
Description of WRF-NCL functions
 http://www.ncl.ucar.edu/Document/Functions/wrf.shtml

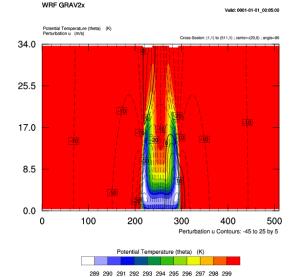

NCL Home Page -> Functions -> Category -> WRF

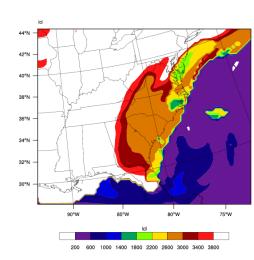
NCL & WRF-NCL • WRF User's Event • June 20-24, 2011


NCAR


Step-by-step WRF-ARW visualizations


KATRINA


2003-07-15 00:00:00



Init: 2000-01-24_12:00:00 Valid: 2000-01-25_00:00:00

OUTPUT FROM WRF V3.0.1.1 MODEL WE = 74 ; SN = 61 ; Levels = 28 ; Dis = 30km ; Phys Opt = 3 ; PBL Opt = 1 ; Cu Opt = 1

OUTPUT FROM WRF V3.0.1.1 MODEL WE = 74 ; SN = 61 ; Levels = 28 ; Dis = 30km ; Phys Opt = 3 ; PBL Opt = 1 ; Cu Opt = 1

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

Step-by-step: filled contours using wrf_xxxx

; Load the necessary scripts

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"

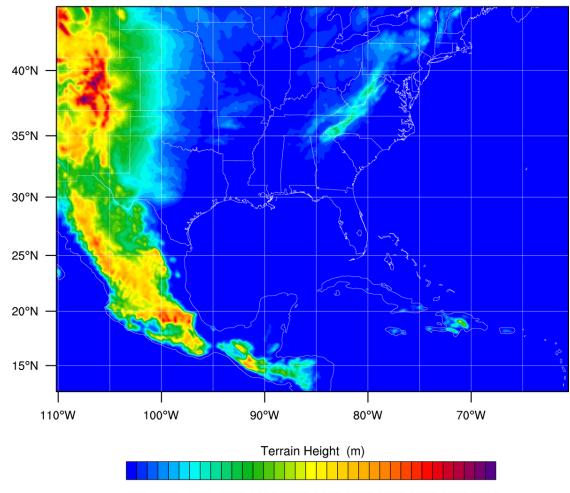
```
; Open a file and read a variable
f = addfile("wrfout_d01_2005-08-27_00:00:00.nc","r")
hgt = wrf_user_getvar(f,"HGT",0)
```

```
wks = gsn_open_wks("ps","hgt") ; "hgt.ps"
```

; Set some plotting resources

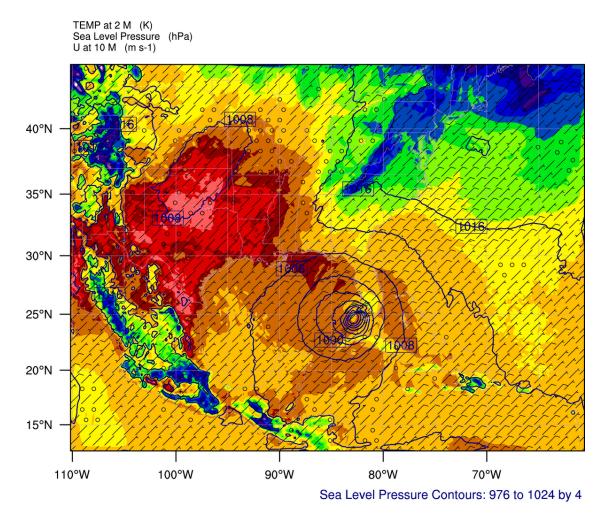
res@cnFillOn = True

These are plot options, also known as "resources"


; These are special wrf_xxxx resources

res@MainTitle = "GEOGRID FIELDS" res@ContourParameters = (/ 250., 3500., 100. /)

contour = wrf_contour(f,wks,hgt,res)



250 550 850 1150 1450 1750 2050 2350 2650 2950 3250 3500

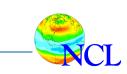
OUTPUT FROM WRF V2.1.2 MODEL WE = 400 ; SN = 301 ; Levels = 35 ; Dis = 12km ; Phys Opt = 3 ; PBL Opt = 1 ; Cu Opt = 1

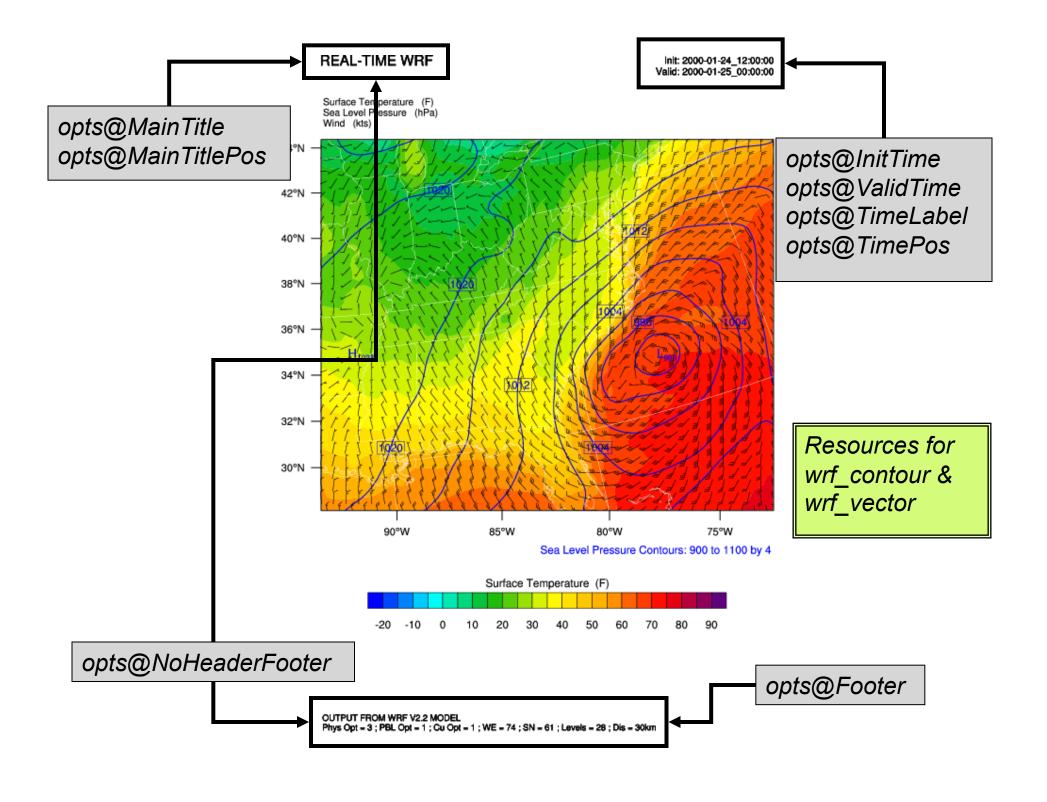
Step-by-step: line/fill contours, vectors slp = wrf user getvar(f,"slp",0) t2 = wrf user getvar(f, "T2", 0) u10 = wrf user getvar(f, "U10", 0) v10 = wrf user getvar(f, "U10",0) wks = gsn open wks("ps","wrf") ; Open "wrf.ps" file for output ; Line contours = True OS os@cnLineColor = "NavyBlue" os@cnLineThicknessF = 2.0= wrf contour(f,wks,slp,os) c slp ; Filled contours ot = True ot@cnFillOn = True = wrf contour(f,wks,t2,ot) c tc ; Vectors = True ov ov@NumVectors = 47= wrf vector(f,wks,u10,v10,ov) vec ; Overlay everything on a map mpres = True pltres = True plot = wrf map overlays(f,wks,(/c tc,c slp,vec/),pltres, mpres)

284 286 288 290 292 294 296 298 300 302 304 306 308 310

OUTPUT FROM WRF V2.1.2 MODEL WE = 400 ; SN = 301 ; Levels = 35 ; Dis = 12km ; Phys Opt = 3 ; PBL Opt = 1 ; Cu Opt = 1

wrf_contour/wrf_vector

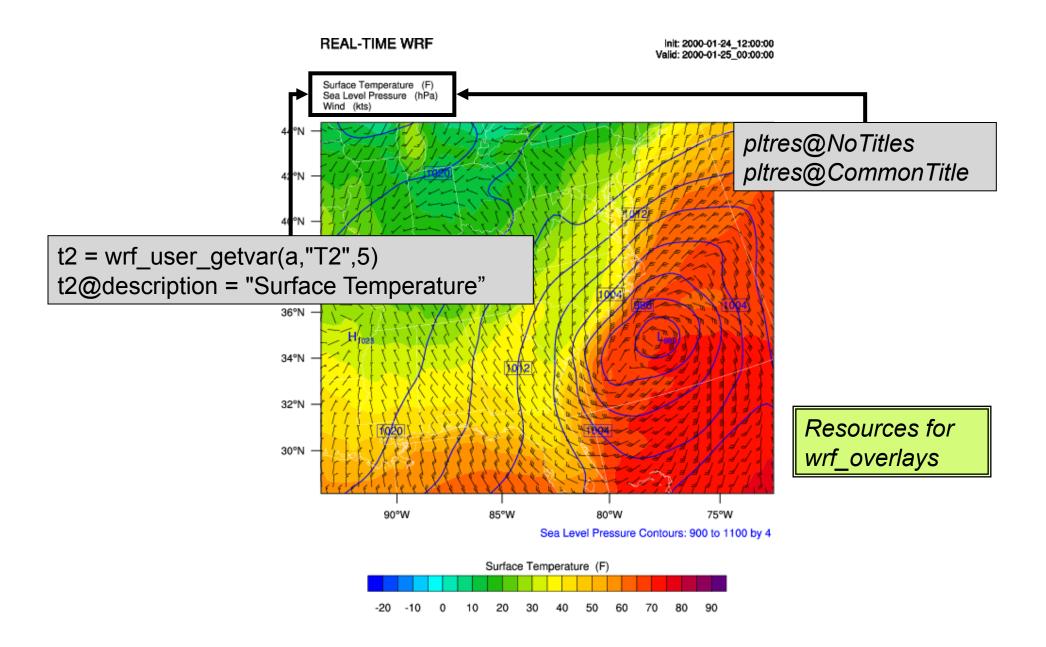

Create line/shaded/filled contours and vectors


contour = wrf_contour(f, wks, ter, copts)
vector = wrf_vector(f, wks, u, v, vopts)

opts@MainTitle opts@MainTitlePos opts@NoHeaderFooter opts@Footer opts@InitTime opts@ValidTime opts@TimeLabel opts@TimePos opts@ContourParameters opts@FieldTitle opts@UnitLabel opts@PlotLeveIID opts@NumVectors

Main title on the plot Main title position (default=left) Turn off headers & footers (default=False) Add model information as a footer (default=True) Plot initial time on graphic (default=True) Plot valid time on graphic (default=True) I abel to use for valid time Time position (default=right) Contour parameters Overwrite the field title Overwrite the field units Add level information to field title Density of wind vector (*wrf_vector*) (*default=25*)

wrf map overlays/wrf overlays


Overlay plots created with wrf contour and wrf vector

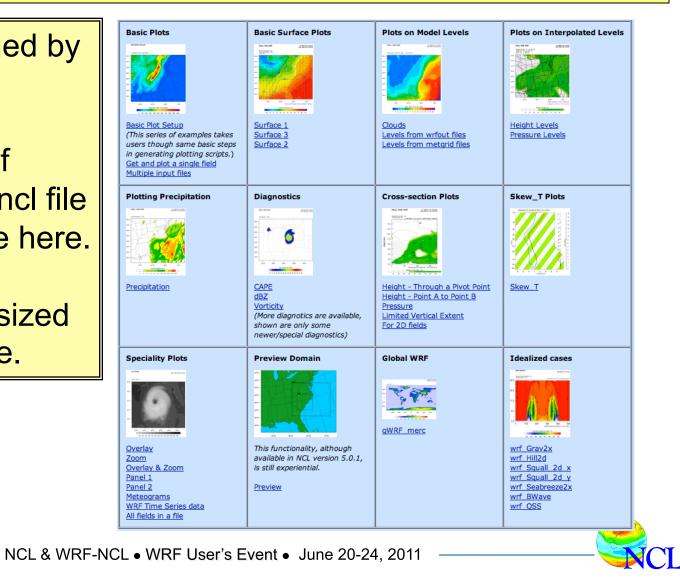
plot = wrf map overlays (f, wks, (/contour,vector/), \ pltres, mpres) plot = wrf overlays (f, wks, (/contour,vector/), \ pltres)

- mpres@mpGeophysicalLineColor; mpres@mpNationalLineColor; mpres@mpUSStateLineColor; mpres@mpGridLineColor; mpres@mpLimbLineColor; mpres@mpPerimLineColor
- To zoom in, set: • mpres@ZoomIn = True, and mpres@Xstart, mpres@Xend, mpres@Ystart, mpres@Yend, to the corner x/y positions of the zoomed plot.
- pltres@NoTitles Turn off all titles
- pltres@CommonTitle
- pltres@PlotTitle
- pltres@PanelPlot •
- pltres@FramePlot

NCAR

- Common title
 - Plot title
 - Whether a panel plot is to be drawn
 - Whether to advance the frame

OUTPUT FROM WRF V2.2 MODEL Phys Opt = 3 ; PBL Opt = 1 ; Cu Opt = 1 ; WE = 74 ; SN = 61 ; Levels = 28 ; Dis = 30km


WRFRW OnLineTutorial

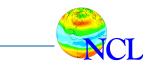
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

Scripts maintained by Cindy Bruyère.

Latest version of WRFUserARW.ncl file usually available here.

Scripts and full-sized images available.

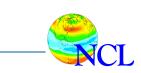
More info on plot resources


 The special WRF-NCL graphical functions have special resources they recognize

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_functions.htm

 Most general NCL resources can also be used to tweak plots (some are set internally and can't be changed)

http://www.ncl.ucar.edu/Document/Graphics/Resources/



Topics

- Overview
- What's new
- NCL language basics
- File input/output
- Data Analysis
- Visualization
- Calling Fortran code from NCL
- Debugging, common mistakes
- Installation, setup, URLs NCAR

NCL & WRF-NCL • WRF User's Event • June 20-24, 2011

Calling Fortran codes from NCL

- Easier to use F77 code, but works with F90 code
- Need to isolate definition of input variables and wrap with special comment statements:
 - C NCLFORTSTART
 - C NCLEND
- Use a tool called WRAPIT to create a *.so file
- Load *.so file in NCL script with "external" statement
- Call Fortran function with special "::" syntax
- Must preallocate arrays! (using NCL's "new" statement)

Example F77 code: myTK.f

C NCLFORTSTART

```
subroutine compute tk(tk,pressure,theta,nx,ny,nz)
      implicit none
      integer nx, ny, nz
      real tk(nx, ny, nz)
      real pressure(nx, ny, nz), theta(nx, ny, nz)
C NCLEND
      integer i, j, k
      real pi
      do k=1,nz
        do j=1,ny
          do i=1,nx
            pi = (pressure(i,j,k)/1000.)**(287./1004.)
            tk(i,j,k) = pi*theta(i,j,k)
          end do
        end do
      end do
      end
 NCAR
          NCL & WRF-NCL • WRF User's Event • June 20-24, 2011
```

Create "myTK.so" file and use in script

% WRAPIT myTK.f

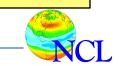
This will create a "myTK.so" file

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
external myTK "./myTK.so"

begin

end

NCAR

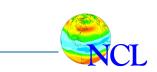

```
t = wrf user getvar(a, "T", 5)
```

```
t = t + 300
```

p = wrf_user_getvar(a, "pressure", 5)

```
; Must preallocate space for output arrays
    dim = dimsizes(t)
    tk = new( dimsizes(t), typeof(t) )
```

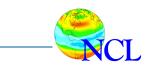
; Remember, Fortran/NCL arrays are ordered differently
 myTK :: compute_tk (tk,p,t,dim(2),dim(1),dim(0))


Calling Fortran 90 codes from NCL

- Can use simple Fortran 90 code
- Your F90 program cannot contain any of the following features:
 - pointers or structures as arguments
 - missing or optional arguments
 - keyword arguments
 - recursive procedures

NCAR

- The input arguments must be reproduced in a separate F77-like "stub" file
- "WRAPIT" is a modifiable script



Example F90 code: myTK.f90

myTK.f90

```
subroutine compute_tk (tk, pres, theta, nx, ny, nz)
implicit none
integer :: nx,ny,nz
real, dimension (nx,ny,nz) :: tk, pres, theta, pi
pi = (pres/1000.)**(287./1004.)
tk = pi * theta
end subroutine compute tk
```


Example F90 code: *myTK.f90* + *stub*

myTK.f90

```
subroutine compute_tk (tk, pres, theta, nx, ny, nz)
implicit none
integer :: nx,ny,nz
real, dimension (nx,ny,nz) :: tk, pres, theta, pi
```

```
pi = (pres/1000.)**(287./1004.)
tk = pi * theta
```

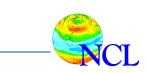
end subroutine compute_tk

myTK.stub

NCAR

```
C NCLFORTSTART
subroutine compute_tk (tk, pres, theta, nx, ny, nz)
implicit none
integer nx,ny,nz
real tk(nx,ny,nz)
real pres(nx,ny,nz), theta(nx,ny,nz)
C NCLEND
```

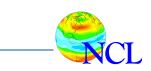
Create "myTK.so" file and use in script


% WRAPIT myTK.stub myTK.f90

Should create a "myTK.so" file. Script will be exactly the same.

```
load "$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn code.ncl"
load "$NCARG ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
external myTK "./myTK.so"
begin
      t = wrf user getvar(a,"T",5)
      t = t + 300
      p = wrf user getvar(a, "pressure", 5)
; Must preallocate space for output arrays
      dim = dimsizes(t)
           = new( dimsizes(t), typeof(t) )
      tk
      myTK :: compute_tk (tk,p,t,dim(2),dim(1),dim(0))
end
              — NCL & WRF-NCL • WRF User's Event • June 20-24, 2011
```

Topics

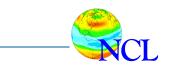

- Overview
- What's new
- NCL language basics
- File input/output
- Data Analysis
- Visualization
- Calling Fortran code from NCL
- Debugging, common mistakes
- Installation, setup, URLs NCAR

Common mistakes or problems

- Forgot .hluresfile (colors and fonts will look wrong)
- Call wrf_xxxx functions with the wrong units
- "cnLineColour" is not a resource in ContourPlot at this time"
 - Misspelling a resource, "cnLineColour"
 - Using the wrong resource with the wrong plot (i.e. using "vcRefMagnitudeF" in a contour plot).
- Data values in plot look off-scale
 - Maybe "_FillValue" attribute not set or not correct.

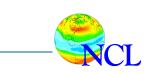
Debugging tips

- Start with an existing script, if possible
- Use indentation (even though not needed)
- Use "ncl_filedump" to look at file quickly
- Use "printVarSummary" to examine variables
 - Check for no "_FillValue" or wrong "_FillValue" value
- To further examine data, use:
 - print(min(x)) and print(max(x)) ; Minimum/maximum of data
 - print(num(ismissing(x))) ; Count number of msg vals
- For graphics, make sure spelling the resource name correctly
- Group graphical resources alphabetically
- Read errors and warnings carefully


Things to watch for: *memory* & *efficiency*

- Nested do loops, unnecessary code in do loops
 - Try to use f90-style arithmetic where possible
 - If code doesn't need to be in do loop (like initializing a variable), move it outside the loop
- Copying metadata unnecessarily. Use (/ and /) to avoid this:

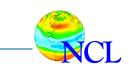
 $ch4_tmp = (/ch4/)$


NCAR

- Creating lots of big arrays and not deleting them when no longer needed. Use NCL's "delete" procedure to clean up.
- Reordering the same array multiple times
 - Do once and store to local variable

Topics

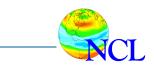
- Overview
- What's new
- NCL language basics
- File input/output
- Data Analysis
- Visualization
- Calling Fortran code from NCL
- Debugging, common mistakes
- Installation, setup, URLs NCAR


Installing NCL and setting up environment

- ESG one-time registration (login/password)
- Download appropriate precompiled binary
- "gunzip" and "tar -xvf" the file
- setenv NCARG_ROOT to parent directory
- Add \$NCARG_ROOT/bin to search path
- Copy ".hluresfile" to home directory

http://www.ncl.ucar.edu/Download/

http://www.ncl.ucar.edu/Download/install.shtml

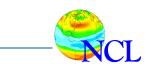


Problems installing or running NCL?

• Send email to ncl-install@ucar.edu (must subscribe first):

http://mailman.ucar.edu/mailman/listinfo/ncl-install

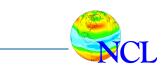
- Be specific about problem:
 - What kind of machine ("uname –a")
 - Which version of NCL, or which file did you download?
 - What exactly is the problem? Include what you are trying to do, and exactly what error message you got.


Customizing your NCL graphics environment

~/.hluresfile

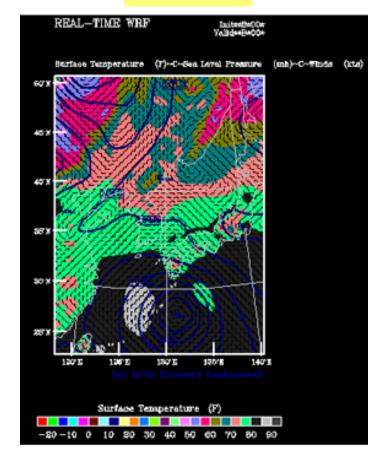
- Download ".hluresfile" file, put in home directory!!
 - Changes your background, foreground colors to white/ black
 - Changes font from times-roman to helvetica
 - Changes "function code" (default is a colon)
 - WRF-NCL users: use to change the default color map

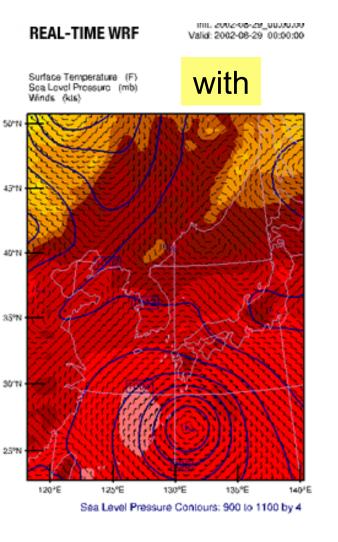
http://www.ncl.ucar.edu/Document/Graphics/hlures.shtml



Sample ".hluresfile"

- *wkForegroundColor : black
- *wkBackgroundColor : white
- *wkColorMap : BlAqGrYeOrReVi200
- *Font : helvetica
- *TextFuncCode : ~
- *wkWidth : 900
- *wkHeight
 - NCL & WRF-NCL WRF User's Event June 20-24, 2011


: 900



With and without a ".hluresfile"

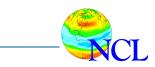
without

Useful URLS

- Online WRF-NCL Graphics Tutorial http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/
- WRF-NCL functions (built-in and "WRFUserARW.ncl")
 http://www.ncl.ucar.edu/Document/Functions/wrf.shtml
- Graphical resources http://www.ncl.ucar.edu/Document/Graphics/Resources/
- Download NCL http://www.ncl.ucar.edu/Download/
- Application examples (includes WRF examples) http://www.ncl.ucar.edu/Applications/
- Detailed NCL reference manual http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/
- NCL Workshops
 http://www.ncl.ucar.edu/Training/Workshops/
- NCL email lists to join

http://www.ncl.ucar.edu/Support/email_lists.shtml

Questions?


wrfhelp@ucar.edu

Questions specific to WRF-NCL

ncl-talk@ucar.edu

Issues with NCL (must subscribe first) http://mailman.ucar.edu/mailman/admin/ncl-talk

