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1. Motivation
‣High-resolution data can provide added information to the study of complex 

topography regions such as the Norwegian fjords (Heikkilä et al. 2011; Myksvoll 
et al. 2012)
‣To make statistical inference about a model simulation, one needs a large sample 

to produce robust statistics (Lopez et al. 2006). Producing large samples at high-
resolution can become computationally expensive. This is especially the case 
when testing different combinations of parameterization schemes
‣Here, we present an alternative approach to analyzing output from limited area 

models based on Bayesian probability. This approach allows for the use of small 
samples to make inferences about the statistical population

2.Data and Methods
‣Model: Weather Research and Forecasting (WRF) model version 3.1
‣Resolution: parent domain at 9 km resolution and two nested domains at 3 km 

and 1 km, respectively (with feedback=1, two-way nesting) - see Fig. 1 
‣Vertical levels: 31 
‣Parameterization schemes: WRF Single-Moment 3-class scheme (mp 

physics=3); cumulus parameterization was turned off (cu physics=0); Yonsei 
University longwave scheme (bl_pbl_physics=1); RRTM scheme 
(ra_lw_physics=1); Dudhia shortwave scheme (ra_sw_physics=1) 
‣LBC: ERA-interim Re-Analysis obtained from the ECMWF Data Server 
‣Other details: the simulation was run from 2007 to 2009. April, May and June of 

2008 and 2009 were retained for the analysis. Results are shown for the three-
hourly 2 m temperature in April. Box selected for spatial averaging: 59.32N, 
60.75N and 5.05E, 7.90E (Hardanger fjord region)
‣Prior: Kvamsøy weather station (60.358N and 6.275E). Data were obtained from 

the Norwegian Meteorological Institute data server at eklima.no.  Average surface 
temperature for April (2003-2011): 7.48±1.27oC 

3. Results
‣Figure 2 shows the Monte Carlo samples from the joint distributions of the population 

mean and variance. The ERA Interim distribution (ERAi), on the top left, shows larger 
spread both for the mean and the variance as compared to the three domains. The 9 km 
domain seems to be off and does not match ERAi. The 3 km nest shows the closest 
approximation to ERAi, whereas the 1 km nest approximates the variance more closely.
‣Figure 3 shows the marginal distribution of the mean, based on the Monte Carlo 

sampling. Red line indicates the mean value of the ERAi marginal distribution. 
Posterior bounds of the 9 km parent domain do not contain the ERAi mean. Table 1 
shows that even though there is some overlap between the ERAi posterior bounds and 
the 9 km domain, this overlap is minimum. The 3 km and 1 km nests show a closer 
overlap with ERAi. The 3 km resolution domain is able to approximate the mean more 
realistically, also confirmed by the posterior bound overlap with ERAi (Table 1).
‣The marginal distribution of the ERAi variance is approximated more closely by the 1 

km resolution domain (Fig. 4). The mean value of the ERAi marginal distribution is 
within the posterior bounds for that resolution. In contrast, the 9 km and 3 km domains 
have posterior bounds outside of the ERAi mean value. There is, however, a better 
overlap between ERAi and the 3 km posterior distribution (Table 1).

Table 1. Posterior distribution summary for the mean (θ)
and variance (σ2

) based on Monte Carlo sampling. The

95% posterior bound (PB) is also indicated for each vari-

able. Temperature units given in degrees Celsius.

θ θ PB σ2 σ2
PB

ERAi 4.26 (3.87, 4.66) 9.90 (8.30, 11.93)

d01 4.80 (4.57, 5.04) 7.08 (6.26, 8.07)

d02 4.19 (3.93, 4.44) 8.04 (7.12, 9.14)

d03 4.56 (4.29, 4.83) 9.19 (8.11, 10.46)
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Fig. 4. The same as Figure 3, but for the precision, 1/σ2
.

casting (WRF) model at three horizontal resolutions (9,

3 and 1 km). Station-based observational data was used

to provide an informative prior. We have presented a

fresh perspective on the assessment of data from the WRF

model, related more specifically to: a) the value added by

increased horizontal resolution; and b) a new method for

comparing sensitivity studies.

The increased horizontal resolution is able to approxi-

mate the mean and the variance of the observations more

closely. This approximation is crucial, for example, when

one is to use these data to force a regional oceal model

(Myksvoll et al. 2012). The Bayesian method introduced

here provides a richer probabilistic view of the dataset. It

also obviates the use of long simulations for estimating the

population mean or variance - thus saving computational

resources. In high-resolution experiments such as this, one

is constrained by the amount of computational resources

used. If one is to use standard statistics, a larger sample

is needed to be able to make robust inferences. Hence,

through the use of prior information, the Bayesian frame-

work provides an alternative approach to estimating the

statistical population, and in this case, for assessing the

bias in the model simulation. It is also useful for sensitivity

studies where one needs to compare not only resolution, but

also the use of different parameterization schemes. This ap-

proach can also be applied to other variables by adapting

it to their underlying distribution.
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4. Conclusion
The increased horizontal resolution is able to approximate the mean and the variance of the 
observations more closely. The Bayesian model provides a richer probabilistic view of the dataset and it 
obviates the use of long simulations for estimating the population mean or variance - thus saving 
computational resources. If one is to use standard statistics, a larger sample is needed to be able to 
make robust inferences. Hence, through the use of prior information, the Bayesian framework provides 
an alternative approach to estimating the statistical population, and in this case, for assessing the bias in 
the model simulation. It is also useful for sensitivity studies where one needs to compare not only 
resolution, but also the use of different parameterization schemes. This approach can also be applied to 
other variables by adapting it to their underlying distribution.

Figure 1 - WRF model domain setup: parent domain at 9 km (outer domain), nest at 3 km 
(d02) and nest at 1 km (d03).
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Figure 2 - Monte Carlo samples from the joint distributions of the population mean (θ) and variance (σ2) for 
ERA Interim (ERAi) and for the different domains. The values in black show the mean value of the population 
mean (right side) and of the population variance (left side). Mean values of θ and σ2 for ERA Interim are 
indicated in red. Temperature given in degrees Celsius.
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Fig. 1. WRF model domain setup: parent domain at 9

km (outer domain), nest at 3 km (d02) and nest at 1 km

(d03).

wave radiation was the Dudhia scheme (ra sw physics=1).

ECMWF ERA-interim Re-Analysis was used as the lat-

eral boundary condition data. These data have been ob-

tained from the ECMWF Data Server. The simulation

was run from 2007 to 2009. The months of April, May

and June of 2008 and 2009 were retained for the analy-

sis. Here, results will be shown with respect to the three-

hourly 2 m temperature in the Hardanger fjord region for

the month of April. The box selected for the spatial av-

eraging is located between 59.32
◦
N, 60.75

◦
N and 5.05

◦
N,

7.90
◦
N. From the timeseries created, we have randomly se-

lected 200 timesteps for calculating the sample mean and

variance.

An informative prior was selected based on the Kvamsøy

weather station located at 60.358
◦
N and 6.275

◦
E. These

data were obtained from the Norwegian Meteorological In-

stitute data server at eklima.no. The Kvamsøy weather

station has been operational since November 2003. The

average surface temperature for April is 7.48±1.27
◦
C for

the years of 2003 to 2011.

a. The Bayesian model

In this study, the Bayesian model is applied to the 2m

temperature in the Hardanger fjord region. It considers

the case in which the mean (θ) and variance (σ2
) are un-

known (Hoff 2009; Gelman et al. 2004). For the joint prior

distribution p(θ,σ2
) for θ and σ2

, the posterior inference

will use Bayes’ rule, as shown in Equation 1:

p(θ,σ2 | y1, . . . , yn) =
p(y1, . . . , yn | θ,σ2

)p(θ,σ2
)

p(y1, . . . , yn)
(1)

where y1, . . . , yn, represent the data. Since the joint dis-
tribution for two quantities can be expressed as the product

of a conditional probability and a marginal probability, the

posterior distribution can likewise be decomposed (Eq. 2):

p(θ,σ2 | y1, . . . , yn) = p(θ | σ2, y1, . . . , yn)p(σ
2 | y1, . . . , yn)

(2)

where the first part of the equation is the conditional

probability of θ on the variance and the data; and the

second part is the marginal distribution of σ2
. The condi-

tional probability part of the equation can be determined

as a normal distribution:

{θ | y1, . . . , yn,σ2} ∼ normal(µn,σ
2/κn) (3)

Where κn = κ0 + n represents the degrees of freedom

(df) as the sum of the prior df (κ0) and that from the data

(n). µn is given by: µn =
(κ0/σ

2)µ0+(n/σ2)y
κ0/σ2+n/σ2 =

κ0µ0+ny
κn

,

where y is the sample mean taken from the WRF simula-

tion. The prior mean is given by µ0. The calculation of σ2

is explained next.

The second part of equation 2, the marginal distribu-

tion of σ2
, can be obtained by integrating over the unknown

value of the mean, θ, as follows:

p(σ2 | y1, . . . , yn) ∝ p(σ2
)p(y1, . . . , yn | σ2

) (4)

= p(σ2
)

�
p(y1, . . . , yn | θ,σ2

)p(θ | σ2
)dθ (5)

Solving the integral, and considering the precision (1/σ2
)

such that the distribution is conjugate, gives the following

gamma distribution:

{1/σ2 | y1, . . . , yn} ∼ gamma(νn/2, νnσ
2
n/2) (6)

Where νn = ν0 + n is the sum of degrees of freedom

of the prior (ν0) and of the data (n). σ2
n is given by σ2

n =
1
νn

[ν0σ2
0 + (n− 1)s2 + κ0n

κn
(y−µ0)

2
], where y is the sample

mean and s2 is the sample variance, both taken from the

WRF simulation. σ2
0 is the prior variance.

b. Monte Carlo sampling

Samples of θ and σ2
can be generated from their joint

posterior distribution using the following Monte Carlo pro-

cedure (Hoff 2009):

σ2(1) ∼ inv gamma(
νn
2
,
σ2
nνn
2

), θ(1) ∼ normal(µn,
σ2(1)
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)
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Fig. 2. Monte Carlo samples from the joint distributions of

the population mean (θ) and variance (σ2
) for ERA Interim

(ERAi) and for the different domains. The values in black

show the mean value of the population mean (right side)

and of the population variance (left side). Accordingly, the

mean values of θ and σ2
for the ERA Interim are indicated

in red. Temperature given in degrees Celsius.

where σ2
is estimated using an inverse-gamma distri-

bution (inv gamma). Each θ(S)
is sampled from its con-

ditional distribution given the data and σ2
= σ2(S)

. The

simulated pairs of {(σ2(1), θ(1)), . . . , (σ2(S), θ(S)
)} are inde-

pendent samples of the joint posterior distribution, i.e.:

p(θ,σ2 | y1, . . . , yn). The simulated sequence {θ(1), . . . , θ(S)}
can be seen as independent samples from the marginal pos-

terior distribution of p(θ | y1, . . . , yn), and so this sequence

can be used to make Monte Carlo approximations to func-

tions involving p(θ | y1, . . . , yn). While θ(1), . . . , θ(S)
are

each conditional samples, they are also each conditional on

different values of σ2
. Together, they make up marginal

samples of θ.

3. Results

Monte Carlo samples from the joint distributions of the

population mean and variance are shown in Figure 2. The

ERA Interim distribution (ERAi), on the top left, shows

larger spread both for the mean and the variance as com-

pared to the three domains. The distribution for the 9 km

domain seems to be off and does not match the ERA In-

terim data. The 3 km nest shows the closest approximation

to the mean of the ERA Interim, whereas the 1 km nest

approximates the variance more closely.
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Fig. 3. Monte Carlo samples from the marginal distri-

bution of θ for ERA Interim (ERAi) and for the different

domains. The blue vertical lines give a 95% quantile-based

posterior bound. In red, the mean value of the ERA In-

terim posterior marginal distribution. Temperature given

in degrees Celsius.

Figure 3 shows the marginal distribution of the mean,

based on the Monte Carlo sampling. The red line indicates

the mean value of the marginal distribution for the ERA

Interim. The posterior bounds of the 9 km parent domain

do not contain the mean value of the ERA Interim. Table 1

shows that even though there is some overlap between the

posterior bounds of ERA Interim and the 9 km domain,

this overlap is minimum. The 3 km and 1 km nests show

a closer overlap with the ERA Interim data. The 3 km

resolution domain is able to approximate the mean more

realistically, aslo confirmed by the posterior bound overlap

with ERA Interim (Table 1).

The marginal distribution of the ERA Interim variance

is approximated more closely by the 1 km resolution do-

main, as shown in Figure 4. The mean value of the ERA In-

terim marginal distribution is within the posterior bounds

for that resolution. In contrast, the 9 km and 3 km do-

mains have posterior bounds outside of the ERA Interim

mean value. There is, however, a better overlap between

the ERA Interim and the 3 km posterior distribution, com-

pared to the 9 km one (Table 1).

4. Conclusion

This study has used a Bayesian statistical model ap-

plied to output data from the Weather Research and Fore-

3

Fig. 1. WRF model domain setup: parent domain at 9

km (outer domain), nest at 3 km (d02) and nest at 1 km

(d03).

wave radiation was the Dudhia scheme (ra sw physics=1).

ECMWF ERA-interim Re-Analysis was used as the lat-

eral boundary condition data. These data have been ob-

tained from the ECMWF Data Server. The simulation

was run from 2007 to 2009. The months of April, May

and June of 2008 and 2009 were retained for the analy-

sis. Here, results will be shown with respect to the three-

hourly 2 m temperature in the Hardanger fjord region for

the month of April. The box selected for the spatial av-

eraging is located between 59.32
◦
N, 60.75

◦
N and 5.05

◦
N,

7.90
◦
N. From the timeseries created, we have randomly se-

lected 200 timesteps for calculating the sample mean and

variance.

An informative prior was selected based on the Kvamsøy

weather station located at 60.358
◦
N and 6.275

◦
E. These

data were obtained from the Norwegian Meteorological In-

stitute data server at eklima.no. The Kvamsøy weather

station has been operational since November 2003. The

average surface temperature for April is 7.48±1.27
◦
C for

the years of 2003 to 2011.

a. The Bayesian model

In this study, the Bayesian model is applied to the 2m

temperature in the Hardanger fjord region. It considers

the case in which the mean (θ) and variance (σ2
) are un-

known (Hoff 2009; Gelman et al. 2004). For the joint prior

distribution p(θ,σ2
) for θ and σ2

, the posterior inference

will use Bayes’ rule, as shown in Equation 1:

p(θ,σ2 | y1, . . . , yn) =
p(y1, . . . , yn | θ,σ2

)p(θ,σ2
)

p(y1, . . . , yn)
(1)

where y1, . . . , yn, represent the data. Since the joint dis-
tribution for two quantities can be expressed as the product

of a conditional probability and a marginal probability, the

posterior distribution can likewise be decomposed (Eq. 2):

p(θ,σ2 | y1, . . . , yn) = p(θ | σ2, y1, . . . , yn)p(σ
2 | y1, . . . , yn)

(2)

where the first part of the equation is the conditional

probability of θ on the variance and the data; and the

second part is the marginal distribution of σ2
. The condi-

tional probability part of the equation can be determined

as a normal distribution:

{θ | y1, . . . , yn,σ2} ∼ normal(µn,σ
2/κn) (3)

Where κn = κ0 + n represents the degrees of freedom

(df) as the sum of the prior df (κ0) and that from the data

(n). µn is given by: µn =
(κ0/σ

2)µ0+(n/σ2)y
κ0/σ2+n/σ2 =

κ0µ0+ny
κn

,

where y is the sample mean taken from the WRF simula-

tion. The prior mean is given by µ0. The calculation of σ2

is explained next.

The second part of equation 2, the marginal distribu-

tion of σ2
, can be obtained by integrating over the unknown

value of the mean, θ, as follows:

p(σ2 | y1, . . . , yn) ∝ p(σ2
)p(y1, . . . , yn | σ2

) (4)

= p(σ2
)

�
p(y1, . . . , yn | θ,σ2

)p(θ | σ2
)dθ (5)

Solving the integral, and considering the precision (1/σ2
)

such that the distribution is conjugate, gives the following

gamma distribution:

{1/σ2 | y1, . . . , yn} ∼ gamma(νn/2, νnσ
2
n/2) (6)

Where νn = ν0 + n is the sum of degrees of freedom

of the prior (ν0) and of the data (n). σ2
n is given by σ2

n =
1
νn

[ν0σ2
0 + (n− 1)s2 + κ0n

κn
(y−µ0)

2
], where y is the sample

mean and s2 is the sample variance, both taken from the

WRF simulation. σ2
0 is the prior variance.

b. Monte Carlo sampling

Samples of θ and σ2
can be generated from their joint

posterior distribution using the following Monte Carlo pro-

cedure (Hoff 2009):

σ2(1) ∼ inv gamma(
νn
2
,
σ2
nνn
2

), θ(1) ∼ normal(µn,
σ2(1)

κn
)

.

.

.

σ2(S) ∼ inv gamma(
νn
2
,
σ2
nνn
2

), θ(S) ∼ normal(µn,
σ2(S)

κn
)

2
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Figure 3 - Monte Carlo samples from the marginal distribution 
of θ for ERAi and for the different domains. The blue vertical 
lines give a 95% quantile-based posterior bound. In red, the 
mean value of the ERAi posterior marginal distribution. 
Temperature given in degrees Celsius.

Figure 4 - The same as Figure 3, but for the precision, 
1/σ2. 


