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TORNADOES!!!!!




Introduction

•  The WRF model is evolving toward a self-

contained NWP system, capable of modeling 
atmospheric motions encompassing global to 
fine scales. 


•  The promise of such capability is appealing to 
both operational and research environments.


•  CBL flows were reproduced using a traditional 
LES code (OU-LES; Fedorovich et al. 2004a,b) 
and the WRF model applied in an LES mode 
(WRF-LES).


•  Velocity spectra and other statistics compared




Model Descriptions


OU-LES
 WRF-LES


Governing Equations

Incompressible, 

Boussinesq

Compressible, 


Non-hydrostatic


Finite Difference 
Scheme


2nd-order centered
 5th-order upwind


Integration Scheme
 3rd-order Runge-Kutta

3rd-order Runge-Kutta 

(time-split)


Subgrid Scheme
 1.5-order TKE


Boundary Conditions
 Periodic




Approach

•  Numerical domain: 10.24×10.24×2 km3 

•  Initialized with same idealized profiles

•  CBL forcings were set equal and held constant

•  Effects of flow types (with/without shear) and of 

varying isotropic grid spacing (20/40/80 m) were 
investigated




Why Spectra?

•  Non-traditional validation measure, why use it?

•  Lack of verification data at these scales

•  Can indicate whether a model produces 

expected energy statistics

•  This in turn indicates whether a model produces 

features consistent with realistic atmospheric 
dynamics


•  Further allows investigation of model numerics 
and assessment of effective resolution




w-component velocity (z/zi=0.25)




normalized velocity variance




normalized turbulence kinetic energy




normalized vertical momentum flux




normalized u-component velocity




u-component: 1D spectral density (z/zi=0.25)




u-component: 2D spectral density (z/zi=0.25)




w-component: 1D spectral density (z/zi=0.25)




w-component: 2D spectral density (z/zi=0.25)




Discussion: Shear-Free

•  Visually, data look fairly similar

•  WRF-LES produced larger velocity variances, 

larger TKE

•  Spectra show that energy seemingly attributed 

to larger scales in WRF-LES as compared to 
OU-LES


•  Spectra also show that WRF-LES had a slightly 
narrower inertial sub-range, slightly less 
effective resolution, and a sharper drop-off at 
high frequencies as compared to OU-LES




Discussion: Shear-Driven

•  Visually, data look fairly similar

•  WRF-LES produced smaller variances, TKE, 

and turbulent momentum flux - larger velocities

•  Spectra show that energy only slightly (if at all) 

skewed toward larger scales in WRF-LES as 
compared to OU-LES


•  Spectra show that k1 spectra match closely, 
but for k2, same behavior seen as in shear-free


•  2D spectra indicate that shear-induced, 
smaller-scale anisotropic effects are smudged 
out in WRF-LES.




Discussion

•  Why? Perhaps numerical filters. 

–  Implicit diffusion term in advection scheme

–  Time-splitting requires filters to maintain stability


•  Could reduce accuracy of finite-difference 
scheme to remove diffusion term

–  Just did this for 80m run, spectra looked “better”, 

but still same behavior at small scales

–  Okay for traditional LES with periodic LBCs, but 

probably not a good idea for real-data where there 
are more complex fronts, boundaries, and spatial 
accuracy is important


•  WRF-LES with realistic LBCs have troubles




Discussion

•  Do we care? (I see you shaking your heads)

•  Skamarock noted in 2004 that filters effect 

scales that aren’t of meteorological importance

•  Probably true on mesoscale or larger, but WRF-

LES? 

•  In air pollution applications, dispersive role of 

small-scale motion may be very important

•  Or in wave propagation business, where 

structure-function parameter will be wrong if 
small-scale motions are affected by numerical 
dissipation.




Summary



