Comparison of convective boundary layer velocity spectra calculated from large eddy simulation and WRF model data

Jeremy A. Gibbs and Evgeni Fedorovich

School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA

TORNADOES!!!!!

Introduction

- The WRF model is evolving toward a selfcontained NWP system, capable of modeling atmospheric motions encompassing global to fine scales.
- The promise of such capability is appealing to both operational and research environments.
- CBL flows were reproduced using a traditional LES code (OU-LES; Fedorovich et al. 2004a,b) and the WRF model applied in an LES mode (WRF-LES).
- Velocity spectra and other statistics compared

Model Descriptions

	OU-LES	WRF-LES
Governing Equations	Incompressible, Boussinesq	Compressible, Non-hydrostatic
Finite Difference Scheme	2 nd -order centered	5 th -order upwind
Integration Scheme	3 rd -order Runge-Kutta	3 rd -order Runge-Kutta (time-split)
Subgrid Scheme	1.5-order TKE	
Boundary Conditions	Periodic	

Approach

- Numerical domain: 10.24×10.24×2 km³
- Initialized with same idealized profiles
- CBL forcings were set equal and held constant
- Effects of flow types (with/without shear) and of varying isotropic grid spacing (20/40/80 m) were investigated

Why Spectra?

- Non-traditional validation measure, why use it?
- Lack of verification data at these scales
- Can indicate whether a model produces expected energy statistics
- This in turn indicates whether a model produces features consistent with realistic atmospheric dynamics
- Further allows investigation of model numerics and assessment of effective resolution

normalized velocity variance

normalized turbulence kinetic energy

normalized vertical momentum flux

normalized *u*-component velocity

u-component: 1D spectral density ($z/z_i=0.25$)

w-component: 1D spectral density ($z/z_i=0.25$)

w-component: 2D spectral density (z/z_i =0.25)

Discussion: Shear-Free

- Visually, data look fairly similar
- WRF-LES produced larger velocity variances, larger TKE
- Spectra show that energy seemingly attributed to larger scales in WRF-LES as compared to OU-LES
- Spectra also show that WRF-LES had a slightly narrower inertial sub-range, slightly less effective resolution, and a sharper drop-off at high frequencies as compared to OU-LES

Discussion: Shear-Driven

- Visually, data look fairly similar
- WRF-LES produced smaller variances, TKE, and turbulent momentum flux larger velocities
- Spectra show that energy only slightly (if at all) skewed toward larger scales in WRF-LES as compared to OU-LES
- Spectra show that k_1 spectra match closely, but for k_2 , same behavior seen as in shear-free
- 2D spectra indicate that shear-induced, smaller-scale anisotropic effects are smudged out in WRF-LES.

Discussion

- Why? Perhaps numerical filters.
 - Implicit diffusion term in advection scheme
 - Time-splitting requires filters to maintain stability
- Could reduce accuracy of finite-difference scheme to remove diffusion term
 - Just did this for 80m run, spectra looked "better", but still same behavior at small scales
 - Okay for traditional LES with periodic LBCs, but probably not a good idea for real-data where there are more complex fronts, boundaries, and spatial accuracy is important
- WRF-LES with realistic LBCs have troubles

Discussion

- Do we care? (I see you shaking your heads)
- Skamarock noted in 2004 that filters effect scales that aren't of meteorological importance
- Probably true on mesoscale or larger, but WRF-LES?
- In air pollution applications, dispersive role of small-scale motion may be very important
- Or in wave propagation business, where structure-function parameter will be wrong if small-scale motions are affected by numerical dissipation.

