Naval Postgraduate School

Fog Prediction Errors Evaluated for
Multiple Physical Parameterization
Schemes in the AFWA Mesoscale

Ensemble
mst.\sm PER SCIENTLA
\V/
Bill Ryerson
Joshua Hacker
Mary Jordan
Kurt Nielsen

28 Jun 12



AFWA Mesoscale Ensemble GINPsil
(MEPS) v

m 10-member ARW-WRF ensemble with 3 nests; inner-most has 4-km
horizontal resolution, 42 Eta levels, no cumulus parameterization

m Each member gets ICs, BCs from different member of NCEP’s Global
Ensemble Forecast System (GEFS)

m Water vapor field is initialized, other RN

water phases are not mtmm .
Afgféfs’rf '-

® 20-h runs initialized at 00Z every 3-4 | =
days from Nov 2008 to Feb 2009 - 29 e S
total runs = *‘Ei) o

= Configuration based on work by b k; TR S
Hacker et al (2011) to obtain “most " 2 Cahf-o;:ua .'
skillful ensemble with least degree of i ?;\:*
complexity” ? ¥

Verification sites (elevation in m)




AFWA Mesoscale Ensemble
(MEPS)

m Model perturbations obtained via unique physics suite, in addition
to unique lower boundary properties

¥

Cumulus
Member Microphysics PBL Shortwave Longwave S{;:tl':n (:e ir(l?lgiem(:; ¢
nest)
1 Kessler YSU  Dudhia RRTM Thermal KF
5 WSM6 MYJ CAM RRTM Thermal KF
7 Kessler MYJ  Dudhia CAM Noah BM
8 Lin MYJ CAM CAM Noah Grell
10 WSMS5 YSU  Dudhia RRTM Noah KF
11 WSMS MYJ  Dudhia RRTM Noah Grell
15 Lin YSU  Dudhia CAM RUC BM
16 Eta MYJ  Dudhia RRTM RUC KF
17 Eta YSU CAM RRTM RUC BM
19 Thompson MY]J CAM CAM RUC Grell

Physics suite used by each member




Extracting visibility from
WRF

m Relationship between model output (g, RH, etc.) and visibility
cannot be explicitly modeled =» need a visibility parameterization

m Desirable to use only critical variables (as determined by first
principles) rather than a customized, highly-statistical approach

m Stoelinga and Warner, 1999
B, =1447(q)""
m Gultepe, 2006
ﬁe — 1786(qc )0.96 ﬂe — 3 . N)0.6473

: 3.0
(Vis,., related to extinction coef (B,) as Vis,, =—~

p.
Vis,,ignt typically 2-3 times higher)
Droplet number concentration (N) not predicted by microphysics

schemes




Layer 1 cloud water RPSS
(thresholds of 7, 5, 3, 1 mi)
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Coastal Valley Mountain

After period of spin up, predictions in coastal and mountain regions
demonstrate skill relative to persistence

Valley region predictions generally not skillful, temporarily drop after
sunrise (17-19 h)

Skill generally increases with forecast hour

Parametric visibility parameterization adds no skill & primary source
of error is from NWP predictions




Member climatologies of

layer 1 cloud water

PRAESTANTIA PER SCIENTIA
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Member climatologies of
layer 1 RH
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m Large negative bias in layer 1 RH

in every member

_ coastal: -0.182
average member bias valley:  -0.069
mountain: -0.014

m Additional g, error from members

restricting fog to very high RH
range compared to obs

m Stochastic predictions negatively

biased and underdispersive

Coastal Valley Mountain

Distribution of Predictions and Observations

Verification Rank Histograms




Layer 1 temperature

! RA‘“‘"“ IAPER SCIEN TiAm
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Mean
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Valley

(K

oooooooooooo

observations mean
ensemble mean

m Warm biases highest

overnight, and in coastal
region

Coastal predictions have
little diurnal variation,
high error variances
overnight = seemingly
lower predictability

Post-sunrise warming
inadequate in both
regions, with larger error
variances in valley
(observed warming is less
consistent)




Layer 1 water vapor

¥ M

Bias

Error
Variance

Mean
Aq, from
7-15h

and
15-20 h

Coastal

Valley

(gke™)

bias

or variance (-2 kg'z)

eeeeeee

nce (12 kg‘z)

observations mean
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m Near-neutral overnight
biases

m g, error variances lower
than temperature error
variances in coastal
region, comparable in
valley region

m Diurnal changes well-

predicted

m Insufficient post-
sunrise moistening
has minor impact on
RH compared to
temperature biases




Layer 1 and 2-m
temperature

Layer 1 2 Meters
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Layer 1 and 2-m
water vapor

Layer 1 2 Meters
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Layer 1 and 2-m

Layer 1 2 Meters

J Bias Rank Histogram | Bias Rank Histogram
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Valley fog
dissipation timing

Valley region post-sunrise count of fog predictions for cases when fog correctly forecast at 14 h (0600 LT)

members | member?

forecazt houe forecast hour fossatbar o forecasthon

| == Observed Fog
—— . Cases
N _
\ Fog Hits
: s : 5 Fog Missed s
i . ] . Opportunities .
N _ N N o

forecast hour forecast hour forocasthow o forecasthow forecact hour

m Number of cases in verification ranges from 2 (mbr 10) to 16 (mbr 15)

m Individual members exhibit biases in dissipation rate, but no clear
systematic bias in this conditional sample

m Poor post-sunrise skill due to cases not shown: high false alarm rate
(all members >0.75), low probabilities of detection (<0.30), and

imEroving skill of Eersistence forecast

13



Summary and discussion

m Layer 1, g, predictions are highly bimodal, with virtually no
values corresponding to light fog

m Except in mountains, warm biases minimize g, production

m Visibility parameterization error is inconsequential unless
incidence of light fog predictions is increased

m Due to positive resolution, ensemble fog predictions still
outperform persistence in coastal and mountain regions after
9 h

m Post-sunrise skill generally worse, but conditional results in
valley region suggest promise

m At 2 meters, less RH bias in coastal and Central Valley regions,
but large dry bias in mountains due to cold bias of up to 6 K

m Error variances at least as good as layer 1 predictions, with
better ensemble dispersion

14



Member-specific behavior

Accuracy
Skill Score
Cumulus . ﬁ//;
. . Land (none on £, / =
Member Microphysics PBL Shortwave Longwave . L AA LA
Surface  inner-most g o7 o —
Coastal 5- —
nest) —
1 Kessler YSU  Dudhia RRTM  Thermal KF
5 WSM6 MY] CAM RRTM  Thermal KF
7 Kessler MYJ  Dudhia CAM Noah BM
8 Lin MY] CAM CAM Noah Grell i
Valley
10 WSM5 YSU  Dudhia RRTM Noah KF ;
11 WSM5  MYJ Dudhia  RRTM  Noah Grell
15 Lin YSU  Dudhia CAM RUC BM
16 Eta MYJ  Dudhia RRTM RUC KF
17 Eta YSU CAM RRTM RUC BM A -
19  Thompson MY] CAM  CAM  RUC Grell | Mountain | &

15



Way forward

m Introduce gentle statistical element to make upward adjustments
to zero and near-zero q_ predictions

m Layer 1 virtual temperature predictions in valley/mountain
region

m Layer 1 absolute moisture and d/dt virtual temperature
predictions in coastal region

16
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Statistical vs physical
techniques in fog prediction

m Statistical approaches to visibility-in-fog (VIF) prediction include
formation of predictors based on observations, NWP output
(statistically calibrated), or combination of both

Inherently calibrated, often outperform NWP data alone
- Require long observational record
- Require stable inputs (i.e., sensitive to NWP platform changes)

m Purely physical techniques place full confidence in NWP output,
and convert to desired parameter using only first principles

No reliance on observations (only needs model data)
First principles valid everywhere
- No calibration; at mercy of model error

- First principles can be complex, entail many unknown quantities

19



Statistical vs physical
techniques in fog prediction

m Many military operations are conducted far away from nearest
airfield, where statistical calibration or climatological tools don’t
exist (targeting, reconnaissance, search and rescue, etc.)

m Aim of this research is to strike appropriate balance between
statistical and physical approaches for VIF prediction suitable for
remote locations:

m Use physical approach as baseline, introduce statistical components
judiciously only where necessary

m Gain insight into error characteristics, physical processes, future
research needs

20



Defining visibility

m True visibility determined by complex process
involving contrast between object and its
background, contrast threshold of observer,

and (during day) scattering of ambient sunlight ¢ ‘_

= With automated instrumentation, visibility estimated usmg
measured scattering coefficient (o,) within 1.5 ft3 sample

m During day, based on distance at ...and if we assume
which brightness difference between homogeneity within the
object and its background is 5% of observing area:
the background brightness:

, ~1n(0.05)
B,=8, =0.05= exp[ ja (x)dx} Xpis = ViSgqy = o

m Different algorithm used for nighttime visibility

m Verification performed against o, since it is the measured
parameter

21



Individual member
cllmatologles of qC

member 11 1100 |- i 700 Ly member 11

% 0

085 .0 s o 06 ) 085 02 s 04 05 .06 08 00 a, (gm®) 00 .05 o 05 o7 o5 .00 a
8.5 o 29 16 66 85 10 12 16 17 o (km ") 6.6 16 17
7 3m 172 14 approx visibllity (miles; 2
5 ol I 1
o: .07 05 .09 a, (gm ’v . 01 8 .09 a, (am™)
29 25 6 17 o, (km ")
pprox visibillty (mil

= In general NWP correctly models blmodal nature of VIF

m All members have excess zero or near-zero g, forecasts at
expense of intermediate q_ forecasts (less so in mountain region)

m Error suggestive of deficiency in NWP model, not initial conditions
m Climatology of NWP members avoids intermediate values,

desEite them being common in observed cIimatoIogx

22
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NWP forecast error vs visibility
parameterization error

O Swag
90 O GO6(N=250)

2

okeserved ¢ (km ') due to fog™

100

ensemble mean o, (km'1)

Scatter plot of observed o, vs ensemble mean o, using SW99 and G06

visibilitz parameterizations
23



NWP forecast error vs visibility
parameterization error

M

v

O Swag
O GO6(N=250)

i | ; m Many false alarms

' are close to verifying
in intermediate
range, whereas
missed opportunities
are not

okserved ¢, (m") due to fog”

ensemble mean o, (km” 1)

Scatter plot of observed o vs ensemble mean o, using SW99 and
GO06 visibility parameterizations

m False alarms likely to benefit from ensemble spread, whereas most
missed opportunities have ¢. =0, meaning ensemble spread is small

m When all members forecast q_ =0, there can be virtually no visibility
parameterization dispersion

24



Nighttime Visibility, Vn (miles)

0 0.5 1 1.5 2 25 3
Daytime Visibility, Vd {miles)

Figure 1. Nighttime visibility versus daytime visibility for the same extinction coefficient using standard
assumptions used by ASOS regarding contrast of an object against its background (during day), luminous
intensity (during night), and visual contrast threshold (Rasmussen et al, 1999).




1.8615
o

s

Day visibility =

-5.7+ In(visibility) _ o
(1.609 - visibility)

Night

Table 1. Algorithms used for conversion of o, (in km™) to visibility (in miles) in all FAA ASOS systems.

Given 0, the nighttime algorithm requires an iterative process to solve for visibility (Belfort Instrument,
2005).
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Figure 5. Histogram of ¢, forecasts from members 16 (top) and 17 (bottom) for very small but non-zero
values. The domain for this plot was created by partitioning bin 2 from Figure 4 into 12 equal sub-bins to
allow closer examination. The first 25 non-zero values are also listed for each member.
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Figure 7. Same as in Figure 4, but for Central Valley sites only.
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Figure 8. Same as in Figure 4, but for mountain sites only.
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Metric

Formula

Description

Best
Score

Worst Score

Percent
Correct

(correct forecasts)

(total forecasts)

Summarizes
overall
performance
with no bias
or skill
information.

Skill Score
(relative to
persistence)

(correct forecasts) — (persistencecorrect forecasts)

(total forecasts) — (persistencecorrect forecasts)

Measures
overall skill.
Value of 0
indicates
forecast is
no better or
worse than
persistence
forecast.

Bias

(total" yes" forecasts)

(total" yes"observations)

Reveals
whether
predictions,
on average,
are too
ambitious or
too
conservative
in
forecasting
event.

Overforecast:
+o0

Underforecast:
0

False
Alarm
Ratio

(incorrect" yes" forecasts)

(total" yes" forecasts)

Answers
question
“when event
is forecast,
at what rate
does is
occur?”

Probability
of
Detection
(each
member)

(correct" yes" forecasts)

(total" yes" fobservations)

Answers
question
“when event
occurs, at
what rate
was it
forecast?”

Table 2. Description of metrics used for binary verification of each member. An "event" refers to an
observed o, > 0.29 km™' due to fog. A “yes” forecast refers to a NWP forecast of g, >.00085 gm” in the
lowest NWP model layer.
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Figure 9. Binary verification of inferred presence of cloud water for all sites: a) percent correct, b)
skill score relative to persistence, c) bias, d) false alarm ratio, e) probability of detection.
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Figure 10. Same as in Figure 9, but for coastal sites only.
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Figure 11. Same as in Figure 9, but for Central Valley sites only.
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Figure 12. Same as in Figure 9, but for mounta




Metric Formula Description Best Score | Worst Score
'
(eifﬁgcl;) le M N, ( (p e )1 — o ) matches the observed 0 !
i=l frequency of occurrence
Measures degree to which 0
ensemble, through its
1 (frequency of
| d probability forecasts, can oceurrence in
) . .
. 1 = = parse data into subsamples | Uncertainty
Resolution M - N, ( i~ ) having frequency of score subszlilryle _
= occurrence different from p m
overall climatological | overall
frequenc climatological
q y frequency)
N/A — but scores may range
Does not depend on from 0 (event occurs 0% or
_ _ forecast, only on 100% of time, so no
Uncertainty o (1 -0 ) climatological frequency; resolution possible) to 0.25

indicates level of difficulty
in obtaining resolution

(event occurs 50% of time,
maximizing potential
resolution score)

Combines reliability and

Brier Score | reliability — resolution + uncertainty resolution to summarize 0 1
overall ensemble accuracy
Brier Skill - Sl of ensemble. Value of
Score - BrierScore Lot - va -

(relative to - 0 indicates forecast is no 1 -

: BrierScore persistence better or worse than
persistence) .

persistence forecast.

M = number of forecast/observation pairs
1= number of probability bins (11)

N = number of data pairs in bin i

p.’ = binned forecast probability (0.0, 0.1, ...1.0) for bin i
0; = observed relative frequency for bin i

0 = climatological frequency (total occurrences / total forecasts)

Table 3. Description of metrics used for binary verification of stochastic forecast from ensemble suite.
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Figure 13. Binary verification of ensemble suite for inferred presence of cloud water. The left column
shows reliability, and the right column shows the resolution and uncertainty for a) all sites, b) coastal sites,
¢) Central Valley sites, and d) mountainous sites.




08 F

0.6

04

02}

BSS
o
:
|
|
|
|
|
I
|
]
|
|
|
|
I
:
|
]
k‘l\
I
|
|
I
|
]
|
|
|
|
|
I
]

I
|
|
|
|
I
|
]

I
I
]
|
|
I
|
|
|

-0.2 -

04}

-0.6 F

-0.8
0

0.8

0.6

04

0.2

BSS
o

-0.2

-04

-0.6

-0.8

1
10 15
forecast hour

20

10 15
forecast hour

20

BSS

BSS

0.8

0.6

04

0.2

-0.2

-0.4

-0.6

-0.8
]

08 F
0.6
04+

0.2+

-0.2
04|
06 F

-0.8
0

b)

1
S 10 15
forecast hour

20

| 1 1

7(d)

5 10 15
forecast hour

20
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