Urbanized WRF simulations of NYC: a heat wave, UHIs, and HRVs?

R. Bornstein, SJSU pblmodel@hotmail.com E. Gutierrez, J. Gonzalez, CCNY With input from: A. Martilli, CIEMT F. Chen, P. LeMone, et al., NCAR J. Ching, UNC C. Mass, U of W Presented at the

13thNCAR WRF Users Workshop: June 2012

Outline

- Two research goals
 - Simulation of summer 2010 interaction b/t a heat wave & NYC UHI with NCAR urbanized-WRF at horiz grid-resolutions less than 1 km
 - Impacts of horiz Δx & Δt -magnitudes on formation & evolution of WRF "vortices" that appear in simulations
- Methodology
- Results
 - NYC: Heat wave + UHI
 - Vortices: real or not?
- Ways forward

Setup for 11 NYC (UHI+ heat-wave) WRF simulations:

- uWRF: our name for NCAR (led by F. Chen) urban-WRF
 - A. Martilli developed urban scheme in my TVM/URBMET
 - S. Dupont put it into MM5 for J. Ching at EPA
 - H. Taha and myself ran it for Houston
 - A. Martilli, E. Gutierrez, et al. are putting it into WRF
 - Momentum-adv: horiz (5th order) & vertical (3rd order)
 - Scalar-adv: moisture (Pos-definite); others (monotonic)
 - K_z: Boulac TKE (+Martilli multi-level urbanization)
 - K_h: Smagorinsky 2-D deformation (km_opt=4)
 - Gradients for K_h: simple, i.e., only adjacent-pts along coordinate directions (Diff_opt=1)

(continued on next slide)

- Setup for 11 NYC (UHI+ heat-wave) WRF simulations (continued):
 - Land Surface Model: Noah
 - Building energy model: Martilli, w/ urban morphological data as f(x,y) from NUDAPT-database via J. Ching
 - Damping (on/at): upper BC, w, and/or divergence
 - Δx: 9, 3, 1, 0.333, 0.111 km
 - Δt: 27, 9, 3, 1, 0.1 s
 - E. Gutierrez's MS (SJSU) & PhD (CCNY) work

Results: NYC Temp at z=12 m for 07/06/10, 13 EST, $\Delta t=1$ s $\Delta x = 1$ km: left, good UHI & $\Delta x = 333$ m: right, waves + convection?? Next slide: corresponding w-fields

NYC w-velocity at z=12 m, 07/06/10, 13 EST, $\Delta t=1$ s $\Delta x = 1$ -km (left): max at Palisades ridge west of NYC (OK) & $\Delta x = 333$ -m (right) waves + convection???

HRVs are sometimes seen in weakly-forced convective PBLs http://lance.nasa.gov/imagery/rapid-response/

Eastern USA, October 2010 From J. Ching

Daily summer, flat Houston area (2006): Terra/Aqua Satellite ~ local noon

From C. Mass: US Pacific NW Note: waves downwind of Mts, but not offshore nor in basin

But, does WRF simulate "waves/HRVs" for correct reasons?

- WRF "always" shows them for Δx < 500 m during daytime windy hours,
- but their "form" depends on WRF-options (as shown in following slides)
 - Δx–magnitude by CCNY/SJSU for NYC
 - Δt-magnitude by CCNY/SJSU for NYC
 - Upwind lateral-boundary location by C. Mass for US-NW
 - Upper boundary absorbing layer by C. Mass for US-NW
 - Advection scheme by H. Kusaka et al. for China Sea
 - PBL scheme by J. Ching for Houston
 - K_{HOR} schemes by A. Martilli for Madrid

NYC Temp at z=12 m for 07/06/10, 13 EST for $\Delta x = 333$ m as function of $\Delta t = 6$, 1, 0.66, & 0.11 s

Rolls dissipate when Δt decreased (rightmost, good UHI; $\Delta t = 0.11$ s is 1/54 recommended value of 6 s for 3rd domain. WRF recommends $\Delta t = 6\Delta x$ for coarsest domain, reduced by factor of 3 for each inner nest. Next slide: w-fields

Results: T-waves decrease as Δt decreases, as K_{NUM} is $\sim (\Delta t)^{-2}$ **Next slide:** corresponding w-fields

NYC w-velocity at z = 12 m on 07/06/10at 13 EST for $\Delta x=333\text{-m}$, $\Delta t = 6$, 1, 0.66, & 0.11 s

Results: > w-waves decrease as ∆t decreases, with rightmost field most reasonable (has max along Palisades ridge west of NYC) > Decrease is expected, whether or not waves are real

How V-wind "lines-up" with waves at 2 levels: Δx=333 km

(not much urban effect)

How V-wind "lines- up" with waves at 2 levels: $\Delta x = 111 \text{ m}$

z= 1st V-level above sfc
(strong-div, from a cell?)

z-wind component (m s-1)

-1.2 - 8 - 4 0

4 8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

V-T z-section

- > Δx = 111 m
- ≻ ∆t = 0.333 s
- ➤ wave is about 27∆x or 3 km
- This is half their size (bad news) in the 333 m simulation (not shown)
- Note: isothems are not greatly distorted
- Note: max-w = several m/s, which could create numerical instabilies

Summary of NYC Results

- Waves develop
 - with $\Delta x=333 \& 111 m$ (not shown), but not with 1 km
 - Start mid-morning, reach max strength in midafternoon, break down into convection in late afternoon, & dissipate at night
 - Thus they are not computationally-unstable (or they would blow up)
- Wave size
 - $-f(\Delta x)$, for $\Delta x = 333 \& 111 m$
 - from z-sections, somewhat hard to determine: more work needed
 - their size should not be $f(\Delta x)$

Results: sensitive to WRF PBL scheme

> (to R) TERRA: Pixel Size 500 m
On 4 Aug 2006, 12 LT
> 6 WRF-runs at 15 LT from J. Ching

Numerical Considerations: Horizontal Diffusion

Standard WRF configuration: K_h from **Smagorinsky deformation-scheme**

$$K_{h} = C_{s}^{2} \Delta x^{2} \left[0.25 \left(2 \frac{\partial \overline{u}}{\partial x} - 2 \frac{\partial \overline{v}}{\partial y} \right)^{2} + \left(\frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x} \right)^{2} \right]$$
$$C_{s} = 0.4$$

In Martilli's simulations, $\Delta x = 1$ km gives K_h of order of 100-200 m²/s

Standard MM5

$$K_{h} = K_{H0} + C_{s}^{2} \Delta x^{2} \left[0.25 \left(2 \frac{\partial \overline{u}}{\partial x} - 2 \frac{\partial \overline{v}}{\partial y} \right)^{2} + \left(\frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x} \right)^{2} \right]$$
$$K_{H0} = 3. \times 10^{-3} \frac{\Delta x^{2}}{\Delta t} = 600 \text{ m}^{2}/\text{s}$$

For $\Delta x = 1000 \text{ m} \& \Delta t = 5 \text{ s}$ (Martilli case), [] = 0, as "background K_{H0} is always dominant (Xu et al., 2001, MWR)

Sensitivity of WRF to Adv- & Diff -chemes for Heavy Rain along Baiu Front H. Kusaka, A. Crook, J. Knievel, & J. Dudhia **Results**: even-order adv schemes (b & d): (dispersive; but no K_{NUM} diff) \rightarrow waves

Dynamics Time integration		Advanced research core with mass coordinate system Time-split method using		160	(a)		A		7	(b)	Spe.	Ciffe.	117
				150			57	1	6			1.511	10
Spatial discritization		3 rd -order Runge-Kutta scheme with smaller time step for acoustic and gravity wave modes Table 1 (horizontal) 3 rd -order upwind (vertical)		140 - 130 -	- Ca	3					2		7
Land sur	Land surface		LSM		160	180	200		220	160	180	200	220
Planetary	Planetary boundary layer					. , .							
Horizonta	Horizontal diffusion		2D-Smagorinsky or constant		(c)		A		-	(d)	1.164	· nghi	4 -
Shortway	Shortwave radiation		a	-	_		. As		1	28	3855.7	140	·· /·
Longwav	Longwave radiation		RRTM				2	1. /	0	Nº4.	YV - 4	1202	1.
Cloud microphysics		Lin Kain-Fritch (d01) 60 sec (d01), 20 sec (d02) NCEP Final Analysis Data			1.000		-		the second	11116	Till		1.
Cumulus parameterization				140	1	1.1	222	7.1	T.	. Chin	10. 97	· · · · ·	1.5
Time step					· · /	2.0	1	10	2	11111	223	20.28	a.S.
Initial and boundary				130	62	2.2	A	1			<u>2</u>	1	1.1
Case	Advection Sch	eme	Numerical Diffusion		160	180	200		220	160	180	200	220
3S	3 rd -order upwind 4 th -order centered 5 th -order upwind 6 th -order centered 4 th -order centered 6 th -order centered 4 th -order centered 6 th -order centered		4 th -order (Implicit)		-	270	-180	-90	0	90	180	cm/s	
4S													
5S			6 th -order (Implicit)										
6S				Fig. 5. Vertical velocity at 850hPa at 0600 JST. (a) Case									
4C			2 nd -order (Explicit) 2 nd -order (Explicit)		3S, (b) Case 4S, (c) Case 5S, and (d) Case 6S. Axis is grid								
6C													
$4\mathrm{F}$			4 th -order (Explicit)	point of domain 2.									
6F			6 th -order (Explicit)										

WRF-ARW Advection Scheme

- Runge Kutta (RK3): 3rd-order in time for linear-Eqs only (Wicker & Skamarock, 2002), (W&S)
- *W&S:* 2nd to 6th orders (f. d.)
 - Even orders: no numerical/implicit diff (reduces peaks), but dispersive (causes waves)
 - Odd orders: numerical diff proportional to Cr, but not dispersive (NYC used 5th)
- Adv-scheme for scalars: could be positive-definite or monatomic, i.e., W&S with filter
- Four Skamarock WRF-Adv ref
- See next slides

5th-order adv-scheme uses 6th-order approx. for $\partial q/\partial x$

$$F_{i-1/2}^{5\text{th}} = \frac{F_{i-1/2}^{6\text{th}} - \frac{|u_{i-1/2}|}{60} [10(q_i - q_{i-1}) - 5(q_{i+1} - q_{i-2}) + (q_{i+2} - q_{i-3})], \quad (4c)$$

$$F_{i-1/2}^{6\text{th}} = \frac{u_{i-1/2}}{60} [37(q_i + q_{i-1}) - 8(q_{i+1} + q_{i-2}) + (q_{i+2} + q_{i-3})] \quad (4d)$$

Advection Scheme Stability

• Stability Condition: $(\alpha^{2+}\beta^{2}+\gamma^{2})^{1/2} < \Omega$ (1)

 $\alpha = u\Delta t/\Delta x$, $\beta = v\Delta t/\Delta y$, $\gamma = w\Delta t/\Delta z$ (2a,b,c)

Recommended Ω -values

Time Scheme	Spatial order						
	3rd	$4 \mathrm{th}$	$5 \mathrm{th}$	$6 \mathrm{th}$			
Leapfrog	Unstable	0.72	Unstable	0.62			
RK2	0.88	Unstable	0.30	Unstable			
RK3	1.61	1.26	1.42	1.08			

Use:(1)&(2c) to compare: 3-D WRF & (2c) Δt's

- From (2c): $\Delta t < \Omega^* (\Delta z)_{min} / [(\sqrt{3})^* w_{max}]$ or $\Delta t < 1.42^* \underline{12} - m / [1.732x(\underline{2} - m/s)] < 6 s$
- WRF recommended: $\Delta t = 6*9 m/(3*3) = 6 s!$
- Maybe g-wave speed not correct stability-criterion

Questions

- How common are HRVs in the atm & from models
- Do RAMS, COAMPS, MM5, etc. also produce HRVs
- What is Eq. for mag of K_{NUM} for WRF adv-scheme(s)
- Why does WRF need filters for (upper, w, &/or divergence) damping
- What are **effects of following** on HRV simulations:
 - $-\Delta x \& \Delta t$ -magnitudes
 - upwind lateral-boundary location
 - upper boundary absorbing layer
 - advection, PBL, & K_{HOR} schemes

Ways Forward: via conf. calls w/ NCAR, etc.

- At NCAR
 - Analysis of IHOPS data (P. LeMone)
 - LES simulations into J. Wyngaard's *terra incognita* > from increasing-Δx end
 - > RANS models come from decreasing- Δx end

> terra incognita arises from need to have "spectral gap" b/t mean & turbulent quantities

- But HRVs, Cu-convection, 2-D (horiz) waves in stable
 BLs, etc. are all meso-phenomena within gap
- At CIEMT
 - New K_H-formulation: as f(TKE)
 - See next 3 slides

Suggested (Martilli) K_h-parameterization

Best option would be to use : $\overline{u'_i u'_j} = -K \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \delta_{ij} t k e$ But, as 1st step, he assumes

 $\overline{u'_i u'_j} = -K \frac{\partial u_i}{\partial x_j}$ (relatively easy to implement in WRF)

As he uses Bougeault & Lacarrere, so K_z is

$$K_z = cl_{boulac}\sqrt{tke}$$

By analogy, in horiz:

$$K_x = c \max(l_{boulac}, \Delta x) \sqrt{tke}$$

Cmax = 3Cz ? Invoke Lenschow?

 $\mathbf{z} = \int_{z}^{z+l_{up}} \frac{g}{\theta_{o}} (\theta(z) - \theta(z')) dz' = tke(z)$ $\int_{z}^{z+l_{down}} \frac{g}{\theta_{o}} (\theta(z') - \theta(z)) dz' = tke(z)$ $\theta = l_{\varepsilon} = (l_{up}l_{down})^{/2}$ $l_{boulac} = min(l_{up}, l_{down})$

I_{up} & I_{down} are distances that parcel from level z, & having the TKE of level z, can travel up- & down-ward due (to buoyancy effects) b/f coming to rest

This is similar to TKE 1.5-closure in WRF-LES (space-average), with anisotropic-mixing option

TKE 1.5 prognostic LES 3-	D Bougeault & Lacarrer	e
$\begin{split} K_{z} &= c\Delta z \sqrt{tke}, if \ N^{2} > 0 \\ K_{z} &= c\min\left(\Delta z, 0.76 \frac{\sqrt{tke}}{N}\right) \sqrt{tke}, if \ N^{2} \leq 0 \end{split}$	$K_z = cl_{boulac}\sqrt{tke}$	vertical
$K_x = c\Delta x \sqrt{tke}$	$K_x = c \max(l_{boulac}, \Delta x) \sqrt{tke}$	horiz

But, instead of filtering only structures smaller than a grid cell, we also filter those smaller than the size of the most energetic eddies (I_boulac),

b/c, as we run in RANS (t-average) mode, all turbulence should be filtered out by turbulence closure scheme

Original structures are now smoothed (filtered)

Ways Forward (cont.)

- At SJSU/CCNY
 - Runs with various $\Delta t's \& \Delta x's$
 - Develop algebraic-stress model for (divergence of) horizontal turbulent-fluxes, which bypasses K_H
 - but need to re-derive Mellor & Yamada's Level
 2.5 Eqs. for a non-hydro/compressible model
 - K is 4th order tensor, with 81 components
- Who else would like to join us??

Urbanized WRF simulations of NYC: a heat wave, UHIs, and HRVs?

R. Bornstein, SJSU pblmodel@hotmail.com E. Gutierrez, J. Gonzalez, CCNY With input from: A. Martilli, CIEMT F. Chen, P. LeMone, et al., NCAR J. Ching, UNC C. Mass, U of W

Questions and suggestions?