

Proudly Operated by Battelle Since 1965

Simulated Carbonaceous and Inorganic Aerosols and their Effect on Radiation during the CalNex and CARES Campaigns in California

Jerome Fast, Vinoj Velu, Ying Liu, and Manish Shrivastava

13th Annual WRF Users' Workshop, 28 June 2012

Objectives

- Quantify the uncertainties associated with modeling the aerosol direct effect by using the extensive meteorological, trace gas, and aerosol data collected over California during May – June 2010
 - Emissions of primary aerosols (BC, POA) and gas-phase aerosol precursors
 - Treatment of the aerosol lifecycle, particularly secondary aerosol formation (SO₄, NO₃, NH₄, SOA)
 - Treatment of aerosol optical properties, particularly coating of black carbon

- Assess the relative role of anthropogenic and natural aerosols on direct and indirect radiative forcing over California
- This presentation provides an preliminary evaluation of one version of WRF-Chem as a first step to reaching the above goals

CalNEX and CARES: Aircraft / Ship

Proudly Operated by Battelle Since 1965

CaINEX Flight Paths May 4 – June 20

NOAA WP-3D DOE 6 **CIRPAS Twin Otter** NOAA Twin Otter 2 Barris NASA B-200 NOAA Ailantis

complimentory studies

mostly southern California

mostly northern California

CARES Flight Paths

June 3 - 28

some overlap in time

July 9, 2012

CaINEX and CARES: Surface

Four primary sites
with a wide range of
instrumentation, e.g.
AMS

SP2

Extensive routine measurements of meteorological, air quality, and column integrated aerosol optical property quantities

Aerosol Modeling Testbed (AMT)

Proudly Operated by Battelle Since 1965

Development of a Evaluation Testbed Case for the Community *Test and Compare Process Modules*

WRF-Chem v3.3.1 Configuration

Proudly Operated by Battelle Since 1965

Meteorology:

- Boundary Layer: MYJ
- Land Surface: Noah
- Radiation: RRTMG
- Microphysics: Morrison
- Convection: new Kain-Fritsch
- IC/BC: GFS + analysis nudging

Chemistry:

- Trace Gases: SAPRC
- Photolysis: FTUV
- Aerosols: MOSAIC, 4 size bins, VBS SOA
- Direct effects on, indirect effects off
- Wet Scavenging: off
- IC/BC: MOZART

Anthropogenic VOC Emissions

Biogenic Isoprene Emissions from MEGAN

May 1 – June 30, 2010 Dx = 4 km, 65 vertical levels

- Anthropogenic emissions from CARB 2008 inventory; trace gases reduced by 33%
- On-line **biogenic** emissions from MEGAN
- On-line sea-salt emissions
- Currently off: on-line dust emissions, biomass burning emissions 6

Effect of Aerosols Solar Radiation

AOD over Two-Month Period

- Differences in AOD among sites simulated reasonably well, but ...
- AOD usually too high, except at CalTech

Spatial Variability of Extinction – Sacramento

Spatial Variability of Extinction – Sacramento

consistent with bias at TO

Now What?

- Even though simulated AOD is reasonable at Pasadena supersite, the simulated impact on radiation is too low. Why?
- Simulated AOD and extinction usually too high elsewhere when compared with AERONET and aircraft lidar measurements, but model biases among both sets of measurements are consistent
- What are the primary uncertainities in aerosol mass, composition, and optical properties (including Idependence) that contribute to biases in AOD, single scattering albedo, and asymmetry factor?

PM2.5 at Operational Sites

	bias	RMSE	r
Pasadena	1.4	11.1	0.34
Bakersfield	6.0	9.1	0.48
Sacramento	3.7	5.3	0.39
Cool	3.4	5.2	0.33

- Total simulated PM concentrations are usually too high
- Model has some skill for multi-day variability, but errors at shorter time scales lead to lower correlation coefficients

Operational vs Supersite PM

Aerosol Composition – Pasadena Site

Proudly Operated by Battelle Since 1965

Simulated Quantities

- OM very similar to measurements
- Multi-day and diurnal variability in SO₄, NO₃, and NH₄ similar to observed, but too low overall and missing some peaks
- BC usually too high

Data Sources: Jose Jimenez, James Allen

Surface Aerosol Composition – Supersites

Mean Concentrations (mg m⁻³) solid = observed, white = simulated

Simulated Quantities

- OM too high at Bakersfield, T0, and T1
- SO₄ similar to observed at Bakersfield, T0, and T1, but too low at Pasadena
- NO₃ too low at all sites by factor of 2 2.5
- Temporal variation of SO₄, NO₃, and NH₄ similar to measurements

Data Sources: Jose Jimenez, James, Allen, Lynn Russell, Chen Song, Qi Zhang, Random Subramanian

Organic Aerosol Components

Aircraft Aerosol Composition – May 31

Data Sources: Ann Middlebrook, John Holloway, Joshua Schwartz, Tom Ryerson

Summary

- CalNex + CARES is an excellent resource to evaluate aerosols
- Aerosol concentrations were "low", but simulating the effect of aerosols on radiation needs to work well for both clean and extreme conditions
- Reason for the differences between observed and simulated shortwave radiation still under investigation
- Simulated PM and AOD too high: OA and BC too high, but inorganics (SO₄, NO₃, NH₄) too low
 - OA: model assumptions for VBS
 - BC: emissions likely too high
 - Inorganics: combination of meteorology and emissions
- Account for measurement uncertainties

Acknowledgements: Support provided by NOAA's Climate Program and DOE's Atmospheric System Research (ASR) program. Thanks to the many investigators for participating in campaigns and providing data.

Extra Slides

All P3 Flights

Regional Photochemistry - Ozone

Spatial Variability of Extinction – Los Angeles

Aircraft Aerosol Composition – June 16

