COSMO-COSMO - Model in CLimate Mode

Achievements and Challenges in Developing and Maintaining 30 year mean (2001-2030) A1B_1 total precipitation **COSMO-CLM** (COSMO) as a Community RCM (NWP and environmental prediction model)

A.Will (BTU Cottbus) and colleagues

WRF workshop, Boulder, 26-28 June 2012

ECHAM5 and CLM

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

History of the COSMO-CLM

b-tu

Brandenburgische Technische Universität Cottbus

	Cottbus		
1996	1. Beta LM Version		
1998	1. official LM Version		
1999	LM operational		
1999	Start of CLM development at PIK		
2000	One-year simulation (Brasilien, PIK)		
2002			
2002			
	First climate simulation		
2004	(ELL Project PPLIDENCE CKSS)		
	(EU FIDJECI FRODENCE, GROS)		
2005	Community Model Status in Germany		
2006	Consortial runs for the 21 st contury		
2000			
2007	Unified model version for weather		
	and climate		
2008-	Further developments and model		
2011	consolidation		
0040			
2012	Unified model version for weather,		
	cimate, aerosois and chemistry		
itv	28 June		

Physics and dynamics of the COSMO-CLM

b-tu

Brandenburgische Technische Universität Cottbus

28 June

Model Physics

- Nonhydrostatic, hydro-thermodynamic equations in u,v,w,T`,p`,q_x(x=v,c,l,r,s,g)
- Multi-layer soil model with ice (t_so,w_so)
- 1 and Multi-layer snow model
- 1 and 2 moment microphysics
- Lake model
- Prognostic precipitation for qr,qs,qg
- TKE / 3D turbulence and subgrid-scale orography scheme
- Tile approach

Numerics:

- time splitting fast waves/slow modes
- Staggered grid, terrain following
 - Leapfrog 3rd order
 - hor. RK 3rd ord., vert. 3rd ord. implicit

Numerics (continued)

- hor: 2nd ord CD, 2nd (to 6th) ord. adv.
- Vert: 2nd ord. for stretched grid
- EULAG ad dynamical core
- 3rd to 6th order horizontal discretisation

Forcing

- Initialisation at all grid points
- Model state (u,v,w,T,q and pp) prescribed at lateral and upper boundary
- Prescribed: Solar TOA, SSTs, Aerosols
- Prescribed monthly vegetation and GHG
- Documentation

Coupling

- Community Land Model
- Ocean: NEMO, TRIMNP/CICE
- Chemistry and aerosol scheme ART
- ECHAM6 in preparation

Standards of COSMO-CLM

b-tu

Brandenburgische Technische Universität Cottbus

28 June

• I/O

- GRIB1, GRIB2 (GRIB-API)
- NetCDF (asynchronous)

COSMO standards for source code development

- Implementation rules
- Management process
- Developers guide
- Testing
- Reporting
- Documentation
- Version status (development, test, released)
- Technical test suite

Documentation

- F90 programming standard
- Internal documentation of the method
- Model Changes documentation
- Scientific documentation of model physics, dynamics and numerics
- Implementation documentation

Data flow in COSMO-CLM

b-tu

Brandenburgische Technische Universität Cottbus

2 Quality of COSMO-CLM

2.1 Convergence properties

Small Disturbance of Boundary Conditions Once in a Month

b-tu

Brandenburgische Technische Universität Cottbus

Δ TOT PREC

1981

1979-1981

Simulated time: 79-83 Run1: clm4 eval Run2: clm4 eval + small dist. of B.C. once in a month

Result:

Convergence of $1/\sqrt{N}$ and thus stoachastic disturbance.

3.1 Convergence Properties

28 June

Small Disturbance of Boundary Conditions Once in a Month

b-tu

Brandenburgische Technische Universität Cottbus

Result:

Convergence of $1/(\sqrt{N-0.1})$ and thus stoachastic disturbance with memory effect.

Same result for other energetic variables.

Memory: soil water content.

Uncertainties of the initial conditions of the driving model (DTL)

Brandenburgische Technische Universität Cottbus

Difference of COSMO-CLM simulation results with different ECHAM5 IBCs

A1B_2 vers. A1B_1

WRF `12

2.2. COSMO-CLM Evaluation results over Europe

K.S. Radtke, K. Keuler

BTU Cottbus, Chair of Environmental Meteorology

Brandenburgische Technische Universität Cottbus

b-tu Brandenburgische Technische Universität Cotthus

Model Domain for Standard Evaluation

257x271 grid boxes 0.165° resolution

Rotated Pole: (-162, 39.25)

Forcing: ERA-40, 1981-2000

2m Air Temperature, Annual Mean

b-tu

Brandenburgische Technische Universität Cottbus

5.00

3.00

2.50

2.00

1.50

1.00

0.50

0.20

-0.20

-0.50

-1.00

-1.50 -2.00

-2.50

-3.00 -5.00

∛[ĸ]

MD: EVAL-3: -0.57K EVAL-4-1: -0.52K EVAL-4-2: -0.05K

Total Precipitation, Annual Sum Brandenburgische Technische Universität Cottbus

b-tu

2000		
500		
200	ME:	
150		
100	EVAL 3.	+65mm
25		
10	EV/AL_/_1.	+151mm
-10		• 13411111
-25		±07mm
-50	EVAL-4-2.	+9/IIIII
-100		
-150		
-200		
-500		
-2000		
v [mm]	MD:	
	EVAL-3:	+64mm
	EVAL-4-1:	+130mm
	EVAL-4-2:	+131mm

Brandenburgische Technische Universität Cottbus

DWD-KU Project in cooperation with BTU

	CCLM-NWP	COSMO-EU (NWP)	CCLM- Climate	
COSMO Quellcode	COSMO4.8-CLM13	COSMO4.21	COSMO4.8-CLM13	
Period	01.01.2010 - 31.12.2011			
Forcing	GME Forecast	GME Forecast	GME Analysis.	
Domain	EU - IPCC Gebiet	COSMO-EU	EU - IPCC Gebiet	
Resolution	12 km (011°)	7 km (0.0625°)	12 km (011°)	
Forecast time	96h	78h	<u> </u>	
Configuration	IPCC-AR5	COSMO-EU	IPCC-AR5	
Data-Assimilation	\checkmark		×	
Soil moisture analysis	\checkmark		×	
Initialisation of the soil	at init. time	sometimes	at initial time	

WRF `12

2. CLM and NWP mode

28 June

3. CLM Community

b-tu Brandenburgische Technische Universität Cottbus

3. CLM Community: Agreement

b-tu

Brandenburgische Technische Universität Cottbus

The CLM Community is an open, international, network of scientists who signed the CLM Community agreement.

The CLM Community Agreement specifies:

- acceptance of the rules of good scientific practice of the DFG
- free exchange of results
- restriction to scientific use of the COSMO model
- contribution to the aims of the CLM Community

Aims of the CLM Community:

- Quantification and Reduction of Model Uncertainties
- Efficient Use of Computational Ressources
- Preparation and Conduction of Consortial Scenario Runs

www.clm-community.eu

CLM Community: Development

b-tu

Brandenburgische Technische Universität Cottbus

Core Institutions of the CLM-Community (2011):

Challenges of Modelling and the CLM Community approach

Brandenburgische Technische Universität Cottbus

Prerequisites of a community

- willingness of the members to spend resources for community tasks
- organised communication

Challenges of community model development

- 1. how we bridge
- institutional interests

•individual membership and bottom up decisions: one member one vote

weather and climate community

- unified model version,
- common standards and community structure
- common standards of source code development,
- representatives in management board

4. Challenges of Modelling and the CLM Community approach

Brandenburgische Technische Universität Cottbus

2. how to implement individual developments in a community model version

- standards of source code development
- personal resources for code maintenance

3. how we systematically develop the model

- independent model evaluation
- community measures of model evaluation
- community standards of model development
 - technical test suite
 - scientific documentation
 - process documentation
 - coding standards

4. Management and User support

- only positively evaluated configurations and model versions are released to all members
- namelist tool
- research topic and simulation browser
- coordination office
- regular meetings and training

Brandenburgische Technische Universität Cottbus

If you want to be fast, go alone,

if you want to get far go together!

