Feature Calibration Alignment for the WRF model

WRF Users Workshop, 2012

Thomas Nehrkorn, *Atmospheric and Environmental Research Inc.*and
Thomas Auligné, *National Center for Atmospheric Research*

Acknowledgements:

Contributors: Syed Rizvi (NCAR), Bryan Woods (AER)

Funding: AFWA

Motivation/Background

- Background errors are sometimes caused by mis-placement (phase errors) of coherent features
- This can result in non-Gaussian error statistics
- Feature Calibration and Adjustment: partition errors into displacements and additive (residual) errors

FCA Formulation

•Non-linear minimization of an objective function

- based on feature calibration and alignment implementation by Grassotti et al. (1999)
- derive displacement vectors by minimizing an objective function:

$$J = J_{res}(y^{obs}, y^{bg}, \delta x, \delta y) + J_{pen}(\delta x, \delta y)$$

• residual errors after adjustment of the background:

$$J_{res} = \sum w_{obs} (y^{obs}(x,y) - y^{bg}(x + \delta x, y + \delta y))^2$$

• penalty function implements constraints on the displacements

$$J_{pen}(\delta x, \delta y) = \sum_{i} \lambda_{i} J_{i}$$

FCA Formulation

- •Use a truncated spectral representation of the displacement vectors
 - retain only largest scales
 - few degrees of freedom for minimization
- •Choice of penalty functions/constraints:
 - Displacements normalized by a length scale S_x

Constraint	Abbrev	Formula	gp/spec
Smoothness	d	$\sum S_x^{-2} (\nabla^2 (\delta x, \delta y))^2$	spec
Magnitude	m	$\sum S_x^{-2} \delta x^2$	spec
Barrier (gp)	gpa	$\sum (\delta x/S_x)^{20}$	gp
Divergence	gpdiv	$\sum (\partial \delta x / \partial x + \partial \delta y / \partial y)^2$	gp

Application to identical twin OSSE

- Katrina case, time-lagged
- Control:
 - 6-hr Forecast initiated at oo UTC 2005/08/28
 - dx=30 km, GFS IC/LBC
- Truth/Observations:
 - 12-hr Forecast initiated at 00 UTC 2005/08/28
- Tested using
 - lowest-level perturbation pressure (P),
 - integrated water vapor (IWV), or
 - both (P+IWV)
- IWV results in almost identical displacements as P+IWV

Displacement Solution: Katrina

Displacements: apply to 3D model state

• Initial tests:

- simple 2d displacements of all model fields
- Imbalances lead to substantial adjustments during spin-up
- Modified algorithm (Hsiao et al.,2010):
 - Displace some fields: wind components, sea level pressure, relative humidity, hydrometeor mixing ratios, potential temperature
 - Re-derive others: pressure, specific humidity, temperature, hydrostatic geopotential, dry air mass
 - Displace relative humidity instead of water vapor mixing ratio
 → avoid artificial creation of super-saturation
 - Displace potential temperature along constant altitude instead model sigma coordinate
 - → avoid changes to static stability

Application of displacements to 3d model fields

Katrina case: Displaced – Control Forecasts after 18 hours

Displaced forecasts (t+18h) run stably and result in changes in cloud mixing ratios

Application to ensemble forecast

applied to an ensemble forecast of deep convection

- 30-member ensemble of 6-hour forecasts of deep convection (dx=3km)
- consider 2d field of maximum dbZ in model column
- characterize ensemble spread in terms of displacements
- Define an ensemble "centroid": ensemble member closest to the ensemble mean
- Distance defined by sum of squared difference in dbZ
- Derive displacement between each ensemble member and the centroid

Example: squall line position differences between ensemble member and centroid

Ensemble Spread (dbZ) before and after displacements

GEN_BE: Cross-Covariances for Original and Displaced Ensemble

rh-qcloud

CONTROL

DISPLACED

Conclusions / Future Work

- Horizontal displacement vectors
 - obtained by comparison of simulated and observed 2D quantities
 - used to adjust 3d WRF model fields
- Results
 - Idealized example shows large potential impact in some situations
 - Mesoscale ensemble and real-data application show small, but positive impacts
- Future work
 - Examine forecast impacts
 - Improve model dynamic balance
 - Refine adjustment algorithm
 - formulation of constraints