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Convection...
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...acts to redistribute heat and moisture vertically and produce rainfall.



* Convective parameterization is a technique used in
NWP to predict the collective effects of (many)
convective clouds that may exist within a single grid
element ... as a function of known model variables.

— Needed to produce effects of convection prior to grid-scale
saturation.
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Convection

* Convection is widely varying in shape, size, and
duration. |
— |solated
— Organized into groups of cells
— Weak or intense
— Deep or shallow

* Convection produces
— Beneficial rainfall and snowfall
— Clouds and changes vertical stability
— Devastating floods
— lce storms and blizzards
— Damaging winds, hail, lightning, tornadoes, hurricanes




Gradients in convective heating helps to drive the
Hadley and Walker circulations

Convection shades the ground from sunlight and
has Iﬁe effect on radiation budget of the Earth
_
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Convectlon produces feedbacks that mﬂuence
large-scale flow patterns

— Long-lived organized convective systems alter upper-
level winds

— Convection during ENSO an important component in
producing the global response to SST change
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Figure 4. Relationship among mesoscale convective complex (MCC) population centres, elevated terrain, and
prevailing mid-level flow.
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Global frequency of low-level clouds during JJA from Warren et al. (1988).



We love convection for its beauty and
rainfall, yet worry about convection
due to the hazards it can produce



Correctly predicting convection is
often the most difficult forecast
aspect...

...as is requires all other
parameterizations of the numerical
model to be correct.



Two major categories

* Deep convection
— Spans much of the troposphere
— Produces rainfall
— Acts to warm and dry the environment

* Shallow convection -
— Spans small portion of the troposphere S —

— Produces no precipitation

— Acts to cool and moisten upper half of cloud and
warm and dry lower half of cloud



More sub-categories possible

e Convective

— Individual cells that have horizontally small
regions of intense updrafts and downdrafts

e Stratiform

— Older regions of convection covering broader
areas often with updrafts of less than 1 m/s



Stratiform

Convective

Convective and SHENS
Stratiform 2 b




Convective Parameterization

* Needed to parameterize convection in numerical
models when grid spacing greater than ~5 km

 When grid spacing < 5 km, then we can
parameterize microphysical processes only and
convective processes are resolved by the model
(to some extent)

* When grid spacing between 5 and 40 km, one can
use both convective parameterization and include

microphysical processes. Stick around for next
talk by Georg Grell!



Decisions

* A convective scheme must determine three things
— Activation? - Trigger Function
— Intensity? - Closure Assumptions

— Vertical distribution? - Specified profile or cloud
model



What controls convection?

Local buoyancy?

Moisture content?

Large-scale forcing?

Small-scale activation?




Represent a
single cloud or
an ensemble of

clouds?

From Arakawa and
Schubert (1974)

Represent total
effect of all
convective
elements
(convective and
stratiform) or
just convective
portion?



Common Traits

* Convective parameterization schemes tend to
evaluate the convective available potential
energy (CAPE) of the environment - the
maximum energy available to an ascending

parcel as determined from simple parcel
theory

* Deep convection cannot occur unless CAPE >0
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Common Traits

* Asecond term common in discussions of
convection and its parameterization is
convective inhibition (CIN).

* The CIN of a parcel is defined as the energy
needed to lift the parcel vertically and
pseudoadiabatically from its starting level to
its Level of Free Convection (LFC).
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Two Main Approaches

* Deep-layer control schemes

— tie the creation of CAPE by large-scale processes
to the development and intensity of convection.

— Mapes (1997) suggests that these schemes could

be termed “supply-side” approaches, as it often is
assumed that convection consumes the CAPE that

is created.

— Kuo, Betts-Miller-Janjic, Arakawa-Schubert
schemes are all deep-layer control schemes



Two Main Approaches

e Low-level control schemes

— Tie the development of convection to the initiation
processes by which CIN is removed.

— CAPE can be generated and stored for long periods
before it is consumed by the scheme.

— Examples include Fritsch-Chappell, Kain-Fritsch,
Emanuel, Tiedtke, and Gregory-Rowntree schemes

 Many schemes have properties of both
approaches



How does convection influence the
environment?

* Large-scale heat and moisture budgets have
been used to determine the influence of
convection on the environment

 These budgets are calculated from data
collected during special field programs
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Heat and Moisture Budgets

* Q, represents the effects of convection on the
heat budget (temperature). Typically this
includes both convective and stratiform
components. Positive Q, implies warming.

* Q, represents the effects of convection on the
moisture budget. Positive Q, implies drying.
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Can we separate contributions from the convective and stratiform
components of the convective systems to see their individual
contributions to the total heating and drying?

Yes, as shown by Johnson and Young (1983).
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Importance of Budget Studies

e These studies tell us how modeled convection
should influence the environment

— Allows for comparison of end results from
convective parameterization to make sure it
mimics what occurs in the atmosphere

* Most convective parameterization schemes
only modify environmental T and q.

— a very few also alter the winds (e.g., Fritsch and
Chappell 1980, Donner et al 2001).



Deep-Layer Control Schemes

e Kuo scheme (1965)
— Enduringly popular scheme
— Easy to code and conceptualize

— Relates moisture convergence (instead of CAPE) to
convective activity [precipitation rate (PR)]

PR=(1- b)[—l J;’f V-(\%;)dmLLQE = (- b)M,
g .

Total column moisture convergence
“b” defines the fraction of total moisture convergence that is stored in the

atmosphere, and (1-b) defines the fraction that is precipitated and used to heat
the atmosphere
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Concerns

e Convection is assumed to consume water (not
energy) at the rate at which water is supplied
by the atmosphere

— Problem is that this assumption is not true — “convection is
not caused by the macroscale water supply.” (Raymond and
Emanuel 1993)

scale Synoptic-

Consumption  scale From Fritsch et al. (1976)

Supply



Deep-Layer Control Scheme

* Betts-Miller-Janjic convective scheme

— Based upon similar sounding structures taken in
regions of tropical convection

— Designed to represent the quasi-equilibrium state
established by deep convection => thus deep
convection consumes CAPE as fast as large-scale
processes create CAPE

— Includes both deep and shallow convection

— Arguably represents total response due to both
convective and stratiform portions



Saturation Points (SPs)

* |nstead of working in T and g, the Betts-Miller
scheme uses saturation points (SPs)

— SPs are defined at the lifting condensation level
(LCL) of a parcel. Indicated by a *.

— Location of parcel on a thermodynamic diagram
usually requires knowledge of (T,q,p).

— With SPs, you only need to know two variables
(T*, g*), (T*,p*), (g*,p*) to uniquely define the
parcel



* SPs are very useful for diagnosing mixing.

— If mixing occurs, SPs will occur along a straight line
called a “mixing line”

— T and q profiles may have a great deal of
structure, but mixing lines tend to be smooth.

From Betts (1986)

Idealised cloudy boundary layer



Typhoon soundings

Saturation points
follow a moist virtual
adiabat from the
surface to the
freezing level and
then asymptote to a
moist adiabat at
cloud top

From Betts (1986)



Tropical convective system
soundings

Same SP structure is
seen in tropical
convective system
soundings as found in
typhoons.

Empirical results drive

convective scheme
1000 behavior.

From Betts (1986)



Betts-Miller-Janjic Scheme Details

Determine if CAPE >0

Find cloud base and cloud top from most
unstable parcel in lowest 200 mb

Construct reference SP profile based upon
cloud base and cloud top

Convert reference SP profile to actual T and g
profiles using an assumed “saturation pressure

departure”
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* Once the reference profiles conserve enthalpy,
determine if rainfall is produced

— If rainfall, then activate scheme and relax towards
reference profiles over ~ 1 hour

— If no rainfall, then do not activate scheme (scheme
must act to dry atmosphere or does not activate)
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Shallow Convection

If cloud depth < 200 mb, or scheme fails to
produce rainfall then adjust according to

shallow convection

Uses typical mixing line to determine
reference profiles for shallow convection

Adjusts profiles to conserve enthalpy

Acts to warm and dry lower half of cloud and
cool and moisten upper half of cloud
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Betts-Miller-Janjic Scheme

Deep-layer control scheme with shallow
component

Very sensitive to cloud-layer moisture —
moisture control scheme

Static scheme (relaxes to specified profile)

Conceptually simple

Has led to forecast improvements

Not responsive to changes in grid spacing
Represents total effects of convective system?



Quasi-equilibrium
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Observations show that large-

scale generation of CAPE
occurs, but locally the CAPE is
not changed. This is the
motivation for many deep-
layer control schemes.

However, same result occurs
if convection responds
randomly to the large-scale
creation of CAPE. This occurs
because gravity waves
redistribute heating quickly
over large areas.
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Concerns

* The work by Brian Mapes and others raise
guestions about the validity of the quasi-

equilibrium assumption that often goes into
developing deep-layer control schemes

— Assumed scale separation is not so clear cut.

 However, they have been successful in
improving numerical forecast skill



Low-level Control Schemes

* Kain-Fritsch convective scheme

* 1-d cloud model that includes updrafts and
downdrafts in formulation

* Updrafts and downdrafts entrain and
detrain according to buoyancy sorting of
sub-parcels

* Equations for rate of change for potential
temperature, water vapor mixing ratio and
cloud water mixing ratio due to convective

effects

* Conserves mass, thermal energy and total moisture
* Simple treatment of hydrometeors



Responds to grid spacing via the advective time
scale. This aspect is unique for convective
schemes. (dx/v)

Net effect of scheme is to remove CAPE.

Designed to represent effects of convective line
and work in conjunction with microphysics
scheme that handles the stratiform portion

Can output rain water, ice and snow to resolved
scales if desired (hybrid approach)
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Kain-Fritsch Details

* Once updraft and downdraft profiles are
known

— For a given updraft mass flux, determine how
much downdraft mass flux can be produced via
evaporation

— Close scheme by assuming that 90% of CAPE is
removed. This is done by increasing updraft mass
flux (which then increases downdraft mass flux)
until reduction in CAPE is met.
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Variable entrainment
and detrainment
appears to produce
more reasonable
profiles.

From Kain and Fritsch (1990)
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Even though the KF scheme is a low-level
control scheme, the vertical mass flux is
very sensitive to the environmental
relative humidity.

Thus, scheme reproduces some of the
behavior of the Betts-Miller-Janjic scheme
without the direct importance of cloud-
layer moisture in scheme construction.



Shallow Convection

Activated when all criteria for deep convection
are satisfied except for minimum cloud depth
(2000 to 4000 m depending upon T)

Deepest shallow cloud layer is used

Same 1-d cloud model with entrainment/
detrainment used to determine cloud
properties

Any precipitation generated by scheme is fed
back to resolvable scales as moisture source

Mass flux at cloud base related to TKE



From Gallus (1999)




Kain-Fritsch Scheme

Low-level control scheme with shallow
component

Dynamic scheme (profile changes as
environment changes)

Response changes with grid spacing
More physically-based approach

Rainfall amounts often reasonable, but
location may be incorrect as initiation
depends on local features that are not always
correctly forecast



Emanuel Convective Scheme

Mass flux scheme like Kain-Fritsch

Uses idealized model of buoyancy sorting for
updraft parcel

Mixing in clouds occurs episodically instead of
continuously as occurs in entraining plume
models

Interesting approach, but not used in many
studies



a

Reversible ascent
to level § such that
ICB <1 <INB

INB

b

Fraction: € of
condensed water re-
moved to unsaturated
downdraft

ICB-

c

Cloudy air
mixes with
environment at
level i

;7SS

SIS/

VA A A

d

Mixtures ascend or
descend to levels
of equal liquid
water potential
temperature

IO A a L aad

From Emanuel (1991)



Simple SCM Comparison

1-d version of ARW
Input single sounding

Short and longwave radiation, YSU PBL and
LSM turned on

Starts at noon local time and runs for 4 hours

Compare changes in vertical profile due to
using BMJ, Grell and KF schemes (not all
changes due to just convective scheme)
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SCM Results

T and Q change due to BMJ Scheme

T and Q change due to GR Scheme T and Q change due to KF Scheme
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Height

SCM Results

T and Q change due to BMJ Scheme

T and Q change due to GR Scheme T and Q change due to KF Scheme
15000 - | | | | | | | . | L [ | |
BMJ GR KF
12000 - -
T (K)
9000 — L -
6000 — -
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3000 — - =
0 T I T T T T T T T T I I T
-4.0 -2.0 0.0 2.0 4.0 6.0;.0 4.0 2.0 0.0 2.0 4.0 6.0-0 -2.0 0.0 2.0 4.0

Heating in column at roughly the same height, with BMJ maximum a little

lower. Note smooth structure of BMJ heating compared to structure in GR
and KF heating profiles.



SCM Results

T and Q change due to BMJ Scheme

T and Q change due to GR Scheme T and Q change due to KF Scheme
15000 1 | | | | | | | L | L [ | |
BMJ GR KF
12000 = - -
T (K)
— 9000 - - = =
<
R
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KF scheme includes overshooting tops, so produces cooling aloft not seen in
BMJ or GR schemes.



SCM Results

T and Q change due to BMJ Scheme T and Q change due to GR Scheme

15000 | | . | | | | | | . |

T and Q change due to KF Scheme
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BMJ scheme for this sounding actually moistens cloud layer slightly, while
removing moisture from bottom of cloud layer. Deeper layer of low-level
cooling in BMJ due to interplay between shallow scheme and PBL scheme

that yields deeper PBL.
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Height

SCM Results

T and Q change due to BMJ Scheme

T and Q change due to GR Scheme T and Q change due to KF Scheme
15000 | | | | I Pl | I g | | L | L | | | . | \
BMJ GR KF
12000 - - - -
, T (K) -
9000 - - = =
6000 - =
q (9/kg)
3000 - / L L
<'/ gﬁg/
0 T I — T —™N \;L T N N | | T
-4.0 -2.0 0.0 2.0 4.0 6.0;0 4.0 —=2% 00 2.0 4.0 6.0-.0 -9% 2.0

4.0

Similarity in drying at top of PBL from GR and KF schemes. Both remove

moisture from cloud layer and increase moisture in lowest levels due to
evaporation within downdraft.

Do these differences matter to an actual forecast?



Trigger functions

® Criteria that determine when and where
convection is activated

®* All schemes have them

* Very important to scheme behavior, but not always
clearly defined

* Betts-Miller trigger function is tied to cloud-layer
moisture

Kain-Fritsch trigger function is tied to grid-scale vertical
motion and parcel reaching it’s LFC
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Trigger Functions (from talk by Kain and Baldwin)

Cloud C Moist. Sub-cloud Cloud-layer
CAPE  pepth |1 Conv. Mass conv. Moisture d(CAPE)/at

N

BMJ
(Eta)

Grell
(RUC,
AVN)

KF
(Research)

Bougeault
(Meteo FR)

Tiedtke
(ECMWF)

Bechtold
(Research)

Emanuel
(Research)




Does the Choice of Scheme Matter?
WRF Simulation Comparison

* ARW with 15-km grid spacing and 35 levels
 Same initial and boundary conditions

* Same physics, except for convective scheme. One
run with KF and one run with BMJ.

* Look at differences in sea level pressure, 2-m
temperature and low-level winds

e 6June 2003 Mei-Yu event over southeastern China



RS

Kain-Fritsch

12 h simulation 1200 UTC 6 June 2003




24 h simulation 0000 UTC 7 June 2003



WRF Comparison

* Both schemes put convection in roughly the
same locations
— Different rainfall totals, rainfall evolution

— Different partitioning of rainfall from convective
scheme and rainfall from microphysical schemes

— Different Mei-Yu front locations
— Different CAPE distributions



Discussion



* Convective parameterization is needed for
grid spacings >~ 5 km.

* Gray zone between 5 and 20 km

* Schemes use very different assumptions and
can be categorized in several ways

* Deep-layer or low-level control?

Moisture or instability or forcing?

Mass flux or profile?

Single cloud or ensemble of clouds?

Represent all convective elements (including
stratiform) or just convective line?

Simple adjustment profile or detailed cloud model?
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Ratios of convective/total precipitation show very

different behaviors among schemes
(C/T = convective divided by total rainfall).
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From Davis et al. (2003)

® Hovmoller diagram shows that convection forms
along mountains and moves east overnight,
whereas model does not reproduce this behavior
consistently. Why does this happen?
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From Xu et al.
(2001)

parameterized convection. What limits this propagation from happening

more routi

nely?



* |sthere a convection parameterization
deadlock as suggested by Randall et al.
(2003)?

* |tis well known that convection
parameterization is a significant source of
uncertainty in climate change studies.

HPC QPF Day 1: May 2011 - May 2012 24-Hour 1-Inch Day 1 QPF Verification
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Scale Separation?

* On global scales, we find a state of near
radiative-convective equilibrium

* On mesoscales, the organization of convection
clearly related to existence of gust fronts, sea
breeze fronts, etc, that initiate convection

e Somewhere in between there is a transition
from deep-layer to low-level control



Assumptions are important to understand if
you want to understand model behavior and
improve model forecasts

Schemes often created and tested to address
a specific problem, then applied globally!
Parameterization is a reductionist approach

— Assume sum of the parts equals the whole but is
this true?

Assumptions can be violated, yet model still
will run and produce forecasts!



* Open questions
* Aerosol effects
e Obtaining maximum precipitation intensities
* Gray zone in horizontal grid spacing

* Interactions with radiation, cloud cover, boundary layer
and other parameterization schemes

* Lack of convective system propagation
 Difficulties in simulating MJO

* Trigger function

* Tendency for overproduction of light precipitation

* Including momentum transport by convection

* We need to recognize that how we frame our
questions is important to making progress



Questions?



