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Abstract. Methane emissions from natural gas production areas are subject to large
uncertainties at regional scales. Top-down methodologies offer an integrated approach
to monitor these emissions but highly depend on the quality of the atmospheric model
used to relate the surface emissions to the observed atmospheric concentrations. Using
continuous measurements of in-situ CH4 and C2H6 mixing ratios from an intensive air-
craft campaign over the Barnett Shale area in March 2013, we evaluated the performance
of the WRF-Chem modeling system using Four Dimensional Data Assimilation (FDDA)
[Deng et al., 2012b] with World Meteorological Organization (WMO) surface stations
and rawindsondes, aircraft meteorological measurements (wind, temperature, humidity),
and vertical profiles of the mean horizontal wind from a Doppler Lidar. We show here
that Mean Absolute Errors (MAE) of the direction and speed of the wind decreased with
the assimilation of the additional aircraft and wind lidar data. However, the observed
spatial variability across the domain suggests that several profilers or repeated aircraft
transects are required to decrease significantly the MAE over the domain. Using our five
WRF-FDDA simulations coupled to a Lagrangian Particle Dispersion Model (LPDM)
[Uliasz, 1994], we evaluated the concentration footprints along the flight transect and
quantified the sensitivity of the location and magnitude of the footprints to the mete-
orological fields. We show here that the WRF-FDDA-LPDM system is capable of dis-
tinguishing between the two major contributors to methane emissions in the area, i.e.
from the urban area of Dallas-Fort Worth (DFW) and from the Barnett shale gas ac-
tivities.

1. Introduction

Methane emissions from natural gas production areas are
subject to large uncertainties at regional scales. Many mea-
surements to date have focused on CH4 mole fraction mea-
surements, with no quantification of emissions (e.g. Phillips
et al. [2013]). Measurements of fugitive emissions from gas
production have focused primarily on measurements at the
level of individual well pads, compressors, or even individ-
ual components of the plumbing within production facili-
ties [US Office of Air Quality Planning and Standards US
EPA, 1995]. This work has led to the creation of emissions
factors which, when combined with activity data and ex-
trapolated from a small number of one-time field measure-
ments to tens of thousands of continuously operating well
pads, provide existing emissions estimates. This approach
is prone to systematic error, as emissions are highly variable
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across production facilities and change over time with in-
dustry practice [Alvarez et al., 2012]. Large-area ( 104 km2)
estimates from atmospheric greenhouse gas (GHG) measure-
ments show great promise to address the shortcomings in
existing shale gas emissions data. Aircraft missions have
been used to document emissions from entire gas fields for
limited periods of times (e.g., measurements over a single
day). A single tower and mobile lab measurements were
used in an emission ratio approach to estimate long-term
emissions from drilling in the Denver-Julesburg basin of Col-
orado [Pétron et al., 2012]. This work also showed relatively
large emissions (∼4% of production). We propose here to
use simulated mesoscale meteorological variables instead of
meteorological aircraft observations to compute the source-
receptor relationship and quantify the emissions from gas
production activities in the Barnett Shale area.

Top-down methodologies offer an integrated approach to
monitor these emissions but highly depend on the quality
of the atmospheric model used to relate the surface emis-
sions to the observed atmospheric concentrations. Using
continuous atmospheric measurements of in-situ methane
and ethane mixing ratios from an intensive aircraft cam-
paign over the Barnett Shale area in March 2013, we devel-
oped an atmospheric inversion system based on high reso-
lution WRF simulations (1 km) and a Lagrangian Particle
Dispersion Model (LPDM) [Uliasz, 1994] to invert for the
methane sources in the area. We present here the perfor-
mance of the WRF-FDDA modeling system [Deng et al.,
2012a] using WMO surface stations and aircraft meteorolog-
ical measurements (wind, temperature, humidity) compared
to the initial WRF simulation in historical mode. We eval-
uated the impact of the additional aircraft data assimilated
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in WRF-FDDA by using the concentration footprints along
the different flight transects, and estimated the correlation
between the locations of the footprints and the ethane-to-
methane ratio of the sources. We finally discuss the model-
ing performance of our WRF-FDDA-LPDM system to dis-
tinguish the two major contributors to methane emissions
in the area, i.e. from the urban area of Dallas-Fort Worth
and from the Barnett shale gas activities.

2. Atmospheric modeling framework

2.1. WRF-Chem-FDDA

The WRF configuration for the model physics used for
this study is the same as those used in Penn State NEXGEN
airport forecast system (NGAFS, Deng et al. [2012b]), and
is identical to the model physics in Rapid Refresh (RAP)
and High Resolution Rapid Refresh (HRRR) systems used
to provide short-range forecasts over North America. This
configuration includes the use of: 1) the Thompson micro-
physical processes, 2) the Grell 3-D ensemble scheme for cu-
mulus parameterization on the coarse grid, 3) the Rapid Ra-
diative Transfer Model (RRTM) for longwave atmospheric
radiation, and the Dudhia scheme for shortwave atmospheric
radiation, 4) the TKE-predicting Mellor-Yamada Level 2.5
turbulent closure scheme (MYJ PBL) for boundary layer
turbulence parameterization, and 5) the 6-level RUC land
surface model (LSM) for representation of the interaction
between the land surface and the atmospheric surface layer.
The initial and boundary conditions used in this study are
based on the hourly 13-km RAP (initial) analysis fields that
combine the latest satellite and radar observations.

The WRF modeling system also has four-dimensional
data assimilation (FDDA) capabilities to allow the meteoro-
logical observations to be continuously assimilated into the
model. The FDDA technique used in this study was origi-
nally developed for MM5 (Stauffer and Seaman 1994) and
recently implemented into WRF [Deng et al., 2009]. It has
several major uses. Firstly, it can be used to create four-
dimensional dynamically consistent data sets or dynamic
analyses (e.g., Deng et al. [2004]; Deng and Stauffer [2006];
Rogers et al. [2013]). Secondly, it can also be used to cre-
ate improved lateral boundary conditions for process studies
(e.g., Reen et al. [2006]). Finally, it can be used for dynamic
initialization, where the model is relaxed towards observed
conditions during a pre-forecast period to improve the initial
state and the subsequent short-term forecast [Deng et al.,
2012b]. The WRF model grid configuration used for this
study is comprised of four grids: 9 km, 3 km and 1 km. The
9-km grid, with a mesh of 322x232 grid points, contains the
most part of southwestern U.S. The 3-km grid, with a mesh
of 202x202 grid points, contains part of Oklahoma and part
of Texas. The 1-km grid, with a mesh of 202x202, only
covers a small portion of northern Texas, similar to Figure
1. Fifty (50) vertical terrain-following layers are used, with
the center point of the lowest model layer located ∼12m
above ground level (AGL). The thickness of the layers in-
creases gradually with height, with 27 layers below 850 hPa
(∼1550 m AGL). Note that WRFs vertical layers are defined
based on the dry hydrostatic pressure and the height of the
center point of each layer changes with time. The top of the
model is set at 100 hPa. A one-way nesting strategy is used
so that information from the coarse domains defines the lat-
eral boundaries of the fine domains but no information from
the fine domains feeds back to the coarse domains.

2.2. Lagrangian Particle Dispersion Modeling

The tracer backward transport was simulated here by the
Lagrangian Particle Dispersion Model (LPDM) described by
Uliasz [1994]. Particles are released from the receptors in
a backward in time mode with the wind fields generated

by the eulerian model WRF-FDDA. In a backward in time
transport mode, particles are released in LPDM from the
measurement locations and travel to the surface and the
boundaries. Compared to a forward mode, all the particles
here are used to estimate fluxes, which reduces the computa-
tional cost of the simulation. The Lagrangian model LPDM
was enhanced to simulate aircraft observations based on the
precise trajectory of the airplane estimated by GPS (Global
Positioning System). At each second, 5 particles are re-
leased at the position of the aircraft. A longer integration
time would yield more particles and hence more reliable La-
grangian statistics but would misrepresent the aircraft tra-
jectory. We use higher resolution for the aircraft measure-
ment period because the eventual particle distributions are
more sensitive to the explicitly resolved vertical velocity.

The dynamical fields in LPDM are forced by mean hor-
izontal winds (u, v), potential temperature, and turbulent
kinetic energy (TKE) from WRF-FDDA. At this resolution
(1 km), turbulent motion corresponds to the closure of the
energy budget at each time step. This scalar is used to quan-
tify turbulent motion of particles as a pseudo random veloc-
ity. Based on the TKE, wind, and potential temperature,
the Lagrangian model diagnoses turbulent vertical velocity
and dissipation of turbulent energy. The off-line coupling
between an Eulerian and a Lagrangian model solves most of
the problems of non-linearity in the advection term at the
mesoscale. Most of the non-linear processes resolved by the
atmospheric model are attributed to a scalar representing
the velocity of the particles. At each timestep (from one
to 20 s), particles move with a velocity interpolated from
the dynamical fields of the WRF-FDDA simulation (every
20 min). The timestep depends on the TKE, following the
discretization described in Thomson (1987).

The formalism for inferring source-receptor relationships
from particle distributions is described by Seibert and Frank
[2004]. At each time step, the fraction of particles (released
from one receptor at one time) within some volume, gives
the influence of that volume on the receptor. If the volume
includes the surface this will yield the influence of surface
sources. If the volume includes the boundary (sides or top)
it yields the influence of that part of the boundary.

3. GHG and meteorological measurements

3.1. Aircraft measurement campaign

In March and April 2013, an aircraft and ground-based
mobile campaign was launched with the objective of quan-
tifying methane fluxes from the Barnett Shale natural gas

Figure 1. Map of the observed atmospheric methane
(CH4) mole fractions along the flight track for March 27,
2013 (in ppb). Natural gas well locations are indicated
in gray.
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Figure 2. Time series of the observed atmospheric methane (in black) and ethane (in blue) mole
fractions, and flight altitudes (in green) during the March 27, 2013 flight.

production field. A Mooney TLS-20 single engine aircraft
(owned and operated by Scientific Aviation) was instru-
mented with a CRDS CO2/CH4/CO/H2O (Picarro) ana-
lyzer measuring every 2.5 s (0.4 Hz) as well as an ethane
(C2H6) analyzer (Aerodyne Inc.) at 1 Hz. Discrete flask air
samples (NOAA/ESRL) were also collected on board. All
instruments drew air from outside the aircraft from dedi-
cated inlets installed under the starboard wing.

Five science flights were conducted in the Barnett region
during clear weather conditions. Flight paths sampled air
upwind and downwind of the gas field and the urban DFW
area. The aircraft conducted two vertical profiles per flight
to measure the mixing height of surface emissions. In this
study, we simulated the meteorological conditions for one of
the five flights of the campaign (March 27, 2013).

3.2. Meteorological measurements

The meteorological observations assimilated into the
WRF-Chem-FDDA system are based on the WMO observa-
tions distributed by the National Weather Service (NWS),
and include 2 hourly upper-air rawinsondes and 17 hourly
surface observations, both within the fine mesh grid domain.
In this study, two other meteorological data sets were avail-
able. The first data set includes temperature, moisture, and
horizontal wind from the aircraft. The aircraft temperature
was measured at 1 Hz from a Thermister mounted outside
the aircraft. The water vapor measurements were made us-
ing the Picarro CRDS instrument at 0.4 Hz. The second
set of measurements was collected by the High Resolution
Doppler Lidar [Grund et al., 2001], measuring the horizontal
mean wind, the vertical velocity variance, and the aerosol
backscatter. For our application, we assimilated the hori-
zontal mean wind every 20 minutes, available at a 30m ver-
tical resolution in the first 3km of the atmospheric column.
The different data sets were used alone or together, resulting
in five different simulations of the meteorological conditions
(cf. section 4.1). The aircraft data represent a large frac-
tion of the domain compared to the rawindsonde and the
HRDL, whereas the HRDL measures continuously the hori-
zontal wind (averaged over 20-min intervals). The two data
sets offer a higher density in space or in time, potentially
impacting the atmospheric model along the simulations in
different ways. We present in section 4.1 an evaluation of
the modeling performances depending on the data sets used
in the assimilation framework.

3.3. Source identification using ethane-to-methane
gas ratios

Ethane is a component of raw gas, making it a good
tracer for fugitive gas and oil-related emissions. CH4 emis-
sions from urban sources, such as landfills and wastewater
treatment, have no correlated C2H6 emissions, as C2H6 is

not emitted by those sources. We present here the mea-
surements for ethane (C2H6) and methane (CH4) during
one of the flights (March 27, 2013) (Fig. 2). The flight
path offers a large coverage of the simulation domain (cf.
Fig. 1), designed to sample the wide CH4 plume in the
area from both urban sources and gas production activi-
ties. In this figure, C2H6 and CH4 measurements time se-
ries show three segments corresponding to enhanced CH4

mixing ratios with no C2H6 enhancement. One segment of
the flight was selected to define the influence of urban emis-
sions in the observed CH4 measurement time series. We se-
lected the locations and time of the aircraft measurements
with high CH4 concentrations (>1,950ppb) synchroneous
with low ethane-to-methane ratios (3.05ppbC2H6

/ppmCH4

instead of 3.13ppbC2H6
/ppmCH4

for non-urban emissions),
i.e. between 19.3 and 19.9 hours on March 27, which cor-
responds to one segment of the overall flight path. The
particles released at the same times in LPDM correspond to
these measurements, and can be tracked in time and space.
The back trajectories of these particles, when touching the
surface, should fit the extent of the urban area of Dallas-
Fort-Worth. Using this technique, we can evaluate the per-
formance of the WRF-Chem-FDDA model for the detection
of urban emissions in the middle of the Barnett Shale gas
production area. The results of this experiment are also
valid for point source detection using mesoscale modeling at
high resolution.

4. Results

4.1. Evaluation of the direct atmospheric transport
(WRF-Chem-FDDA)

To evaluate the WRF model performance on the 1-
kim grid among the five experiments, mean absolute error
(MAE) statistics for temperature, wind speed, and wind di-
rection were computed to measure the model error. Sixteen
surface stations, one upper-air sounding from Fort Worth
(KFWD), and the Lidar mean horizontal wind, throughout
the 48 hour period, between 12 UTC 26 March and 12 UTC
28 March 2013, were used in the meteorological evaluations.
Comparison of the MAE time series of WRF-simulated sur-
face wind speed and wind direction (temperature is not as-
similated in the PBL) among the five experiments indicated
that the added value of assimilating surface winds is ev-
ident (e.g. Fig. 3 (a)), since the surface wind direction
MAE statistics are consistently improved in the FDDA ex-
periments. For the upper-air statistics (e.g. Fig. 3 (b)),
assimilation of WMO sonde data at KFWD substantially
improved the WRF solutions for all three fields, since mass
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fields along with winds were assimilated above the bound-
ary layer; however, there was still more significant improve-
ment in the wind fields, especially in wind direction (e.g.,
∼30 degree improvement in the lowest kilometer). Compar-
ison between the FDDA (in green) and FDDA-w-Aircraft
(in dark blue) shows that assimilating aircraft observations
generally further improves the WRF simulation, but the im-
provement is not as significant as that of using WMO only.
This is likely because the MAE is computed at the KFWD

Figure 3. Mean absolute error for the 5 WRF-FDDA
simulations for the wind direction using 16 surface sta-
tions between 12 UTC 26 March and 12 UTC 28 March
2013 (upper panel), one vertical profile (KFWD) over the
same period (middle panel), and the HRDL mean hori-
zontal wind (lower panel).

location where the KFWD sonde is assimilated. Consider-
ing both FDDA simulations with the HRDL Lidar data at
the KFWD site, the MAE increases around 1km a.g.l (Fig.
3 (b)). On the other hand, the MAE decreases significantly
at the Lidar location when using the Lidar measurements
(Fig. 3 (c), light blue and purple lines)). The two sites
are distant by only few kilometers, with a difference in the
observed wind speed of about 0.5 to 1 m/s. These results
illustrate the spatial variability in the horizontal mean wind
profiles across the domain. We discuss in section 5 the po-
tential implications related to spatial variability and data
assimilation in a mesoscale model.

4.2. Deconvolution of DFW city emission signals in
the CH4 backward plume

The particles released during the segment of the flight (on
March 27, 2013) corresponding to the enhancement of CH4

mole fractions but not C2H6 mole fractions were selected as
a test-case for the detection of CH4 city signals. The five
WRF-Chem-FDDA simulations were coupled to the LPDM
to generate footprints at the surface (cf. Fig. 4). These
footprints were computed using the positions of the parti-
cles when close to the surface (50m high or lower), gridded
at 1km resolution, and compared to the Dallas-Fort Worth
urban area. In a perfect transport scenario, the cloud of
particles near the surface should correspond exactly to the
width of the urban area. Here, the spatial extent of the

FDDA case

No FDDA FDDA with Aircraft

FDDA with Lidar FDDA with Aircraft and Lidar

Figure 4. Maps of particles corresponding to low ethane
to methane data
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footprints, their amplitude and their orientation, reflect the
impact of the meteorological driver data from WRF-Chem-
FDDA, with some noticeable differences among them. This
calculation would direclty impacting a mass-balance calcu-
lation, combining our model results with the observed CH4

concentrations. We show in Figure 4 that:
• The FDDA case footprint is aligned with the city lim-

its, driven by a southern mean wind, and the spatial extent
of the footprint to the South is about 32.6N, except one
segment of the flight influenced by emissions further South.

• The no FDDA case (WRF in classic historical mode)
shows that the footprint direction is biased toward the West
and do not correspond exactly to the DFW urban area. The
error in the wind direction would limit the potential use of
the model results in the proper attribution of signals to the
urban area. In addition, several sub-segments of the flight
extend south of 32.6N.

• The FDDA-aircraft case shows a similar orientation of
the footprints as the FDDA case, slightly shorter.

• the FDDA-Lidar case shows a larger amplitude with
an enhanced sensitivity to the surface emissions, and an in-
creased extent of one sub-segment to 32.2N.

• The FDDA-aircraft-Lidar footprint is narrower and de-
spite a correct orientation (confirmed by the improvement
in the wind direction in Fig. 3), the width of the footprint is
under-estimated. However, the magnitude of the footprint
remains unchanged (compared to the FDDA case).

The impact of the data assimilated in WRF-Chem shows
that the density in time and space plays a critical role in
constraining the footprint at the surface. Our five simula-
tions show clear differences despite an overall agreement of
the spatial distribution. We discuss in section 5 the impact
of these differences for source detection and quantification.

5. Discussion and conclusions

Figure 5. Simulated Turbulent Kinetic Energy (in
m2.s−2) and Potential Temperature profiles from the five
WRF simulations at 21 UTC (27 March 2013), and ob-
served potential temperature (dashed line) at 00 UTC
(28 March 2013)

Table 1. Difference (in %) to the mean surface footprint for
the five simulations aggregated over the entire domain (first
row) and for the urban area of Dallas-Fort-Worth (second row)

Case No FDDA FDDA Aircraft Lidar Air+Lidar
Domain 2% 2.6% -3.2% 1.7% -3%
Urban 2.9% -6.3% -3.1% 3.5% 2.9%

We computed the footprints corresponding to the CH4

emissions from the urban area of Dallas-Fort-worth by re-
leasing particles at the exact GPS positions where low
ethane-to-methane gas ratios were measured during the
flight. As explained in section 3.3, the associated footprints
should correspond to the urban area and can be used to
evaluate the modeled surface footprints. Figure 4 shows the
different surface footprints corresponding to the low ethane-
to-methane ratios (cf. Fig. 2, period indicated in red). The
differences in the wind direction between the FDDA and the
no-FDDA simulations is clearly visible (Figure 4), as shown
in Figure 3, with a shift in the orientation of the surface
footprints. Considering the difference among the various
FDDA cases, whereas the MAE did not show any signif-
icant impact, the spatial distribution of the surface foot-
prints (and more specifically their lengths along the main
wind direction) can vary singnificantly from one simulation
to another. In a mass-balance approach, the variability in
the surface footprints is propagated into the calculated CH4

emissions and contribute to the overall uncertainty associ-
ated with the emission estimate. As noted in section 4.1,
this variability in the footprints is related to the observed
variability in space. These results suggest that a sufficient
sampling density is necessary in order to improve the model-
ing results across the domain, which is critical for an aircraft
campaign covering a large fraction of the fine mesh domain.

We present in Table 1 the impact of the different data sets
used in the WRF-Chem-FDDA system on the amplitude of
the surface footprints, for the urban area only and over the
entire domain. The results indicate that the variability in
the sensitivity to the surface emissions is about 10% for the
urban area, and about 6% for the overall domain. In ad-
dition, the no-FDDA simulation produces similar estimates
than other cases, within the range of the 4 FDDA cases de-
spite the clear bias in the wind direction (cf. Fig. 3). The
results suggest that the assimilation of meteorological data
in our simulation do not constrain significantly the magni-
tude of the footprints. This magnitude is primarily driven by
the mixing depth and the vertical mixing strength. In other
terms, the physics of the WRF model (i.e. PBL scheme and
Land Surface Model) drives the vertical mixing near the sur-
face which limits the impact of the data assimilation on the
mixing height. However, a recent study over the San Fran-
cisco bay area showed that the PBL depth can be slightly
improved over longer time scales [Rogers et al., 2013].

We finally estimated the sensitivity to the PBL depths,
directly impacting the magnitude of the surface footprints,
which can be affected by the assimilation of observations
within the PBL (wind fields only) and above the PBL (wind
fields and temperature/moisture), as shown in Rogers et al.
[2013]. We show in Figure 5 the profile of Turbulent Kinetic
Energy (TKE) (upper panel) and the potential temperature
(lower panel) for the five cases at 21UTC, 27 March 2013
at the exact location of the lidar. The observed potential
temperature profile from the KFWD rawinsonde at 00UTC
on 28 March is shown on the same plot (lower panel, dashed
line). We also computed the PBL depths using the bulk
Richardson number (lower panel) which uses the potential
temperature vertical gradient. The assimilation of aircraft
data (blue lines) increases the PBL depth at this location
(lower panel), whereas the lidar alone or the initial FDDA
cases do not impact the PBL depth. Considering the turbu-
lent vertical mixing (upper panel), the TKE increases clearly
when using the lidar data, but the impact of the aircraft
data on the buoyancy term is unclear, which suggests that
the increase in PBL depth is related to the shear production
term in this case. The variability in the vertical mixing due
to the assimilation of various data sets may explain some
of the differences in the amplitude of the surface footprints,
but no clear correlation between the sign of the difference
(cf. Table 1) and the vertical mixing strength was observed.
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