Comparing WRF Modeled Fields to Observations for the 9-10 June 2003 MCS Observed During BAMEX

Bethany N. Norris¹, Robert M. Rauber¹, Greg M. McFarquhar¹, Brian F. Jewett¹, Bryan A. Guarente¹, and David P. Jorgensen²

1. University of Illinois at Urbana-Champaign

2. National Severe Storms Laboratory

Motivation

- Modeled and observed mesoscale convective systems (MCSs) account for a substantial amount of summertime precipitation
- Many methods of evaluating simulated MCSs exist (rainfall rate, vertical velocity, maximum reflectivity, etc.) but these cannot account for horizontal and vertical variability of these quantities within the MCS
- Here, methods of comparing the bulk statistical properties of an MCS sampled during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) are presented

How to Develop CFADs

Model vs. Observations CFADs

Highest frequencies occur at similar Z, but very different distribution with respect to altitude

Example from June 9-10, 2003

- Observations obtained from two radars on board NOAA and NRL P-3 aircraft flying ahead of and behind the convective line
- This provides a unique high-resolution dataset including dual- and quad-Doppler data

Hoie 6 4 2 -30-20-10 0 Figure 3:	$\begin{array}{c} \begin{array}{c} & & & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$
Model vs. Observations CFDDs	
• •	Variable bins along x-axis Distance front to rear on y-axis Colors represent frequency of occurrence
	Difference in location of leading convective line between simulation and observations

Figure 1: Radar reflectivity at 0540Z from NOAA P-3 (left) and simulated reflectivity from a corresponding stage of evolution at 0445Z (right).

Model Details

- 36 hour simulation using WRF v3.3.1
- Initial and boundary conditions set with NAM data
- 27 km, 9 km, 3 km, 1 km grids
- Thompson microphysics
- **RRTMG SW and LW radiation**
- Monin-Obukhov surface-layer physics
- RUC land surface model
- Mellor-Yamada-Janjic PBL
- BMJ cumulus (27 and 9 km grids only)

(b) (C)

- Like CFADs, but frequencies plotted as function of distance behind leading anvil edge rather than altitude
- Y-axis oriented parallel to rear inflow jet (RIJ), x-axis perpendicular to y-axis, z-axis vertical

Figure 4: Left: CFDD of simulated line-relative velocity. Right: CFDD of model observed line-relative wind velocity.

Average Altitude per Bin Diagrams (ABDs)

- CFDDs do not have information about vertical distribution
- ABDs constructed in the same manner as CFDDs, but colors represent altitude rather than frequency

Front-to-rear flow predominant in lower altitudes, strongest ahead of convective line

Rear-to-front flow predominant in higher altitudes

Contoured Frequency by Altitude Diagrams (CFADs)

Developed by Yuter and Houze (1995) to examine statistical properties using the frequency of occurrence of variables as a function of altitude

Figure 2: Schematic of a CFDD. The domain used to construct the CFDD can be visualized as a stick of butter, with each vertical slab being one histogram. Each x-z slab is 57 km wide by 3 km deep by 7 km tall.

Figure 5: Simulated (left) and observed (right) ABD diagrams corresponding with the above CFDDs.

Conclusions

- CFDDs and ABDs are new methods for comparing modeled MCSs to observations
- Allow for examination of statistical distribution of quantities rather than specific values

We would like to acknowledge NSF grants ATM-0233172 for funding analysis and AGS-0833826 for funding travel.