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Abstract

The Weather Research and Forecasting (WRF) Model is used to investigate the sensitivity of total precipitation (RAINC + RAINNC) and daily temperatures in physical parameterization schemes for Southern Ontario, Canada. Simulations overestimated precipitation
In July but underestimated it in January, and were more sensitive to convective and PBL parameterizations. WRF performed poorly in simulating summer extreme precipitation. For surface air temperature, the model captured spatial heterogeneity well; however,
the magnitude Is systematically underestimated, being higher in January and lower in July. Model underestimates daily minimum temperature but overestimates maximum temperature. Temperature is most sensitive to PBL schemes, followed by Microphysics.
Taylor diagram analysis indicates that modeled precipitation and temperature agree well with DAYMET observations with correlation coefficient of 0.6~0.8 and >0.9, respectively. Thus, optimum selection of parameterization combinations is indispensable in
configuring WRF for regional climate change assessment.
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* |n all simulations: MP stands for microphysics, CU for Figure 4: Taylor diagram showing correlation coefficient, and standard deviation and root mean square Figure 6: Same as Figure 3, but for daily maximum
cumulus parameterizations, PBL for planetary difference of modeled precipitation relative to DAYMET observation. temperature Oritario
boundary layer schemes, and RZ stands for INISTRY OF RESEARCH & INNOVATION
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