

Estimation of Optical Turbulence Using Multiscale Atmospheric Models

Yao Wang and Sukanta Basu

Department of Marine, Earth, & Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA

Introduction

Optical Turbulence (O.T.)

- > The wave phase and amplitude of the optical and electromagnetic waves are highly affected by the small-scale variation of temperature and specific humidity.
- \succ The turbulent atmosphere causes the intensity of a light beam to fluctuate or scintillate, causes beam to wander, and causes the distortion and random displacement of images. (Hutt, 1999)

Fig. 1 A laser beam propagating through the atmosphere spreads due to diffraction but is also influenced by turbulence in the form of randomly varying eddies. (Burger et al., 2008)

Case Study: CASES-99

October 23-25, 1999

The first night was intermittently turbulent, with several turbulent mixing events (Sun et al. 2003a). A low-level jet (LLJ) event occurred with a mean wind speed of 7.6 m s^{-1.} The Height of the LLJ was approximately 100 m.

In the second (turbulent) night, a continuous LLJ with mean wind speed of 15.2 m s⁻¹ was observed. The LLJ height was approximately 200 m and it increased throughout the night.

Fig. 4 Surface analysis at 0 UTC (top) and 12 UTC (bottom) on October 24, 1999. The Midwest of the U.S. was dominated by a synoptic-scale surface high pressure system.

Observations

A diverse suite of observational datasets were utilized for model validation. These datasets were collected by a Doppler lidar, a small-aperture scintillometer, sonic anemometers, and a sounding system etc.

http://www.eol.ucar.edu/instrum

Fig. 5 Pictures of observation instruments: sounding (left), tower (middle), and sonic anemometer (right).

Fig. 2 Double star Zeta Aquarii (which has a separation of 2 arcseconds) is blurred by atmospheric turbulence. (Image Courtesy: *Alan Adler*)

Applications

Estimation and prediction of optical turbulence are significant to a wide range of applications: environmental monitoring, optical communication, astronomy, sensing with detection, reconnaissance and identification, guiding systems or directedenergy systems. (See Cheinet et al., 2010 and the references therein)

http://nextbigfuture.com/ Fig 3 Laser communication (left) and guiding systems (right).

Numerical-modeling Framework

>Observational datasets were assimilated into the WRF model. From the WRF model, the Initial conditions, time-dependent lowerboundary conditions (e.g., near-surface air temperature), and time-heightdependent large-scale forcings (e.g., geostrophic wind, mesoscale advection of temperature) were extracted for LES runs The tuning-free SGS model, locallyaveraged scale-dependent dynamic (LASDD) subgrid-scale (SGS) model was applied in Large-eddy simulation.

Model Configuration

Refractive index structure parameter

> Under some approximations, the optical turbulence effects can be quantified in terms of structure parameter (C_n²) of refractive index (n) (units $m^{-2/3}$). (Tatarski 1961)

 $C_n^2 = \langle [n(\widetilde{r}_1) - n(\widetilde{r}_2)]^2 \rangle / |\widetilde{r}_1 - \widetilde{r}_2|^{2/3}$

Estimation C_n² using meteorological models

- \succ The small-scale turbulence is primarily driven by the meteorological forcings including synoptic-scale variability, diurnal cycles, large-scale gravity waves, convective plumes, and mesoscale circulations etc.
- \succ C_n² is chosen to describe the effect of the optical turbulence. It depends on temperature structure parameter C_{T}^{2} , if the minor wavelength and humidity dependence are ignored.
- Numerical meteorological models can be utilized to estimate C_{T}^{2} from temperature and turbulent variables.

 $C_{n}^{2} = (79PT^{-2} \times 10^{-6})^{2}C_{T}^{2}$

Indirect C_T^2 and C_n^2 Calculations

Monin-Obukhov similarity functions

 $800 \text{ m} \times 800 \text{ m} \times 790 \text{ m}$

Time: 05z-12z Oct. 24th

around observation

Grid size: 10 m

Fig. 6 The WRF model nested domains (left), and locations of vertical grid points (right).

Results

Domain size:

LES

Fig. 9 Time series of surface friction velocity (left) and

Generic turbulent temperature scale

Stably Stratified Surface Layer

MOST 1. Wyngaard-Coté-Andreas (1989)

$$f_T(\zeta) = c_{T1} \left[1 + c_{T2} \zeta^{2/3} \right]$$

MOST 2. Thiermann-Grassl (1992)

 $f_T(\zeta) = 6.34 \left[1 + 7\zeta + 20\zeta^2 \right]^{1/3}$

MOST 3. Kink (Hartogensis, 2006)

$$f_T = \begin{cases} 5.5 & \text{for } \zeta < 0. \\ 5.5(\zeta / 0.1)^{2/5} & \text{otherwise} \end{cases}$$

Regression model function Sadot et al. (1992) $C_n^2 = a_1 W + b_1 T + c_1 R H + c_2 R H^2 + c_3 R H^3$

 $+ d_1WS + d_2WS^2 + d_3WS^3 + e$

W is temporal hour weight; **T** is temperature; **RH** is relative humidity **a**, **b**, **c**, **d** and **e** are numerical regression coefficients.

- \geq Diurnal cycle of C_n² were captured reasonably by the WRF Model. $> C_n^2$ was underestimated during the intermittently turbulent night by both WRF and LES.
- MOST function 2 (Wyngaard-Coté-Andreas) estimated C_n² relatively better during the daytime. All MOST functions showed the limitation of calculating O.T. during the nighttime.
- Regression model showed significant limitation in terms of timing and intensity of O.T.

Future Work

 \succ C_T² will be calculated directly from the temperature structure function using LES –generated flow fields output:

 $< [T(x+r) - T(x)]^2 > = C_T^2 r^{2/3}$

> Optical turbulence data from a coastal site will be analyzed and simulated (field experiment at Beauford, NC currently ongoing). New MOST function will be developed from the LES and observational databases.

Fig. 10 Time series of C_n^2 simulated by WRF (left) and LES (right).

Selected References

Basu, Sukanta, and Fernando Porté-Agel. "Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scaledependent dynamic modeling approach." arXiv preprint physics/0502134 (2005). Burger, Liesl, Igor A. Litvin, and Andrew Forbes. "Simulating atmospheric turbulence using a phase-only spatial light modulator." South African Journal of Science 104.3-4 (2008): 129-134. Cheinet, S., et al. "The use of weather forecasts to characterize near-surface optical turbulence." *BLM* 138.3 (2011): 453-473. Hartogensis, Oscar. Exploring scintillometry in the stable atmospheric surface layer. Wageningen Universiteit, 2006. Hutt et al. "Modeling and measurements of atmospheric optical turbulence over land." *Optical Engineering* 38.8 (1999): 1288-1295. Liu, Yubao, et al. "Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications." Journal of Wind *Engineering and Industrial Aerodynamics* 99.4 (2011): 308-319. Sadot, Dan, and Norman S. Kopeika. "Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation." Optical Engineering 31.2 (1992): 200-212. Wang, Yao and Basu, Sukanta (2013), Realistic Stable Boundary Layer Turbulence Generation: A Coupled Mesoscale-Large-Eddy Modeling Framework. (under preparing) Tatarskii, Valerian Ilich. "Wave propagation in turbulent medium." *Wave Propagation in Turbulent Medium, by Valerian Ilich Tatarskii.* Translated by RA Silverman. 285pp. Published by McGraw-Hill, 1961. 1 (1961).