

Introduction

- 37 warm season convective events from 2006-2010 were simulated using WRF3.1.1 (ARW) with 3 km grid spacing (Thompson microphysics, NAM IC/LBC) and integrated for 24h
- Simulated events were classified using 10 morphologies, and then compared to observed morphologies
- Larger scale environment documented at initiation using i km RUC analyses 1 hour prior to initiation
- Objective skill score based on degree of mode agreement and timing was developed and used to rate events

Modes used included 9 used by Gallus et al. (2008) plus one mixed-complex (MC) mode added.

For objective verification, normalized time scales used for both simulated and observed systems, then merged (example below).

Mode	Time (UTC)	Length (hours)	Normalized time		Mode	Time (UTC)	Length (hours)	Normalized time
BL	2054		0	Initiation	CC	2000		0
NS	0425	7.52	0.50		NS	0330	7.5	0.47
BE	0724	10.50	0.70		NL	0600	10	0.63
	1200	15.10	1	End of	TS	0930	13.5	0.84
				period		1200	16	1

Observations

T ₁	T ₂	ΔΤ	Obs.	WRF
0	0.47	0.47	BL	CC
0.47	0.50	0.03	BL	NS
0.50	0.63	0.13	NS	NS
0.63	0.70	0.07	NS	NL
0.70	0.84	0.14	BE	NL
0.84	1	0.16	BE	TS

WRF model

Group match – modes in same general classification (linear, cellular) but not exact =1/2 point over time interval

Detailed match – exact modes = 1 point over time interval

Final score for example case would be $0.5^*.47+0.5^*.16+0.13 = 0.45$

Note: penalty was introduced if simulated initiation or dissipation of system was more than 3 hours different from that observed

Average score for full sample was 0.49

20km RUC hourly analyses used to obtain initial environment conditions (1 hr prior to initiation)

- Surface-based CAPE
- Mixed-layer CAPE
- 0-3 km bulk shear
- 0-6 km bulk shear
- Potential temperature at surface
- Potential temperature at level of maximum theta-E

Prediction of Convective Morphology in Near-cloud Permitting WRF Model Simulations William A. Gallus, Jr. and Darren V. Snively, Iowa State Univ., wgallus@iastate.edu

r	
20	
20	

2		

Difference

Initiation

End of period

WRF forecasted more cellular modes and fe								
	IC	CC	BL	BE	TS	N		
Radar	6	7	24	21	19	1		
Model	8	16	24	8	13	2		

WRF usually simulated a cellular mode when a cellular mode was observed

General Results

Observed mode	Comparisons	Detailed matches	Group matches
IC	7	3 43%	6 86%
CC	11	5 45%	9 82%
BL	34	17 50%	24 71%
Total	52	25 48%	39 75%

WRF struggled more to predict linear modes

Observed mode	Comparisons	Det ma	tailed tches	G ma	roup tches	
BE	44	7	16%	26	59%	
TS	29	7	24%	17	59%	
PS	1	0	0%	1	100%	
NS	24	8	33%	10	42%	
LS	0					
Total	98	22	22%	54	55%	

WRF struggled to predict nonlinear and the mixed-complex modes

Observed mode	Comparisons	Detailed matches
NL	29	10 33%
MC	6	1 17%
Total	35	11 31%

Bow Echoes and Trailing Stratiform Squall Lines were most poorly predicted, with a failure to produce stratiform rain a common problem, along with problems organizing the convective line

BL

wer linear modes than observed

LS	NL	MC	Total
0	17	3	115
0	16	1	109
0	-1	-2	-6

	All cases	Cases with score > 0.5	Cases with score < 0.5			
SBCAPE (J kg ⁻¹)	1860	1936	1802			
MLCAPE (J kg ⁻¹)	2422	2251	2553			
CAPE diff. (J kg ⁻¹)	562	315	751			
0-3 km shear (m s ⁻¹)	11.7	11.9	11.6			
0-6 km shear (m s-1)	19.8	22.4	17.8			
Theta sfc. (K)	303.5	302.6	304.2			
Theta max. (K)	307.1	305.2	308.5			
Theta diff. (K)	3.6	2.6	4.3			
Lev. of max theta-E (hPa above sfc)	65	48	77			
Theta lapse (K hPa ⁻¹)	5.8	5.7	5.8			
Statistically significant at 90% confidence level						

- linear modes (especially TS, BE)
- scoring cases
- depicting mode

Acknowledgments: Funding provided by NSF grant ATM-0848200 and American Recovery and Reinvestment Act of 2009, and ATM-1222383

Skill at predicting mode seems to depend on strength of 0-6 km shear, and possibly also max theta value (CAP strength) or strength of low-level stable layer

Summary

Model was more accurate at matching cellular modes than

Strong 0-6 km shear and cool potential temperatures at the level of maximum theta-E at initiation associated with better-

Weaker 0-6 km shear and stable conditions near the surface at initiation associated with timing issues

Individual case studies (not shown) suggest problems in simulating near-storm shear may explain model failures at